Abstract

We have developed a powerful parallel genetic algorithm design tool for photonic crystal and waveguide structures. The tool employs a small-population-size genetic algorithm (microgenetic algorithm) for global optimization and a two-dimensional finite-difference time-domain method to rigorously design and optimize the performance of photonic devices. We discuss the implementation and performance of this design tool. We demonstrate its application to two photonic devices, a defect taper coupler to connect conventional waveguides and photonic crystal waveguides, and a sharp 90° waveguide bend for low index contrast waveguides.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  2. K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).
  3. E. Yablonovitch, Phys. Rev. Lett. 58, 2058 (1987).
    [CrossRef]
  4. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, Jr., Opt. Express 8, 517 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  5. K. Krishnakumar, Proc. SPIE 1196, 289 (1989).
    [CrossRef]
  6. D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Mass., 1989).
  7. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, Berlin, 1996).
  8. Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms (Wiley, New York, 1999).
  9. E. G. Johnson and M. A. G. Abushagur, J. Opt. Soc. Am. A 12, 1152 (1995).
    [CrossRef]
  10. G. Zhou, X. Yuan, P. Dowd, T. Lam, and Y. Chan, J. Opt. Soc. Am. A 18, 791 (2001).
    [CrossRef]
  11. Q. Wang, J. Lu, and S. He, Appl. Opt. 41, 7644 (2002).
    [CrossRef]
  12. J. Jiang and G. Nordin, Opt. Express 7, 237 (2000), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  13. S. Kirkpatrick, C. D. Gellatt, Jr., and M. P. Vecchi, Science 220, 671 (1983).
    [CrossRef] [PubMed]
  14. P. Sanchis, J. Martí, J. Blasco, A. Martínez, and A. García, Opt. Express 10, 1391 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  15. A. Mekis and J. D. Joannopoulos, IEEE J. Lightwave Technol. 19, 861 (2001).
    [CrossRef]
  16. See http://ab-initio.mit.ed/mpb.
  17. L. Li, G. P. Nordin, J. M. English, and J. Jiang, Opt. Express 11, 282 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]

2003 (1)

2002 (2)

2001 (3)

2000 (1)

1995 (1)

1989 (1)

K. Krishnakumar, Proc. SPIE 1196, 289 (1989).
[CrossRef]

1987 (1)

E. Yablonovitch, Phys. Rev. Lett. 58, 2058 (1987).
[CrossRef]

1983 (1)

S. Kirkpatrick, C. D. Gellatt, Jr., and M. P. Vecchi, Science 220, 671 (1983).
[CrossRef] [PubMed]

Abushagur, M. A. G.

Ahmad, R. U.

Blasco, J.

Chan, Y.

Dowd, P.

English, J. M.

Espinola, R. L.

García, A.

Gellatt, Jr., C. D.

S. Kirkpatrick, C. D. Gellatt, Jr., and M. P. Vecchi, Science 220, 671 (1983).
[CrossRef] [PubMed]

Goldberg, D. E.

D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Mass., 1989).

He, S.

Jiang, J.

Joannopoulos, J. D.

A. Mekis and J. D. Joannopoulos, IEEE J. Lightwave Technol. 19, 861 (2001).
[CrossRef]

Johnson, E. G.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gellatt, Jr., and M. P. Vecchi, Science 220, 671 (1983).
[CrossRef] [PubMed]

Krishnakumar, K.

K. Krishnakumar, Proc. SPIE 1196, 289 (1989).
[CrossRef]

Lam, T.

Li, L.

Lu, J.

Martí, J.

Martínez, A.

Mekis, A.

A. Mekis and J. D. Joannopoulos, IEEE J. Lightwave Technol. 19, 861 (2001).
[CrossRef]

Michalewicz, Z.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, Berlin, 1996).

Michielssen, E.

Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms (Wiley, New York, 1999).

Nordin, G.

Nordin, G. P.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).

Osgood, Jr., R. M.

Pizzuto, F.

Rahmat-Samii, Y.

Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms (Wiley, New York, 1999).

Sanchis, P.

Steel, M. J.

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Vecchi, M. P.

S. Kirkpatrick, C. D. Gellatt, Jr., and M. P. Vecchi, Science 220, 671 (1983).
[CrossRef] [PubMed]

Wang, Q.

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2058 (1987).
[CrossRef]

Yuan, X.

Zhou, G.

Appl. Opt. (1)

IEEE J. Lightwave Technol. (1)

A. Mekis and J. D. Joannopoulos, IEEE J. Lightwave Technol. 19, 861 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (4)

Phys. Rev. Lett. (1)

E. Yablonovitch, Phys. Rev. Lett. 58, 2058 (1987).
[CrossRef]

Proc. SPIE (1)

K. Krishnakumar, Proc. SPIE 1196, 289 (1989).
[CrossRef]

Science (1)

S. Kirkpatrick, C. D. Gellatt, Jr., and M. P. Vecchi, Science 220, 671 (1983).
[CrossRef] [PubMed]

Other (6)

D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Mass., 1989).

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, Berlin, 1996).

Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms (Wiley, New York, 1999).

See http://ab-initio.mit.ed/mpb.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of a DTC for input and output coupling between a single-mode CWG and a single-mode PhCWG.

Fig. 2
Fig. 2

Typical convergence curve of a μGA.

Fig. 3
Fig. 3

DTC with three μGA-optimized off-axis Si defect posts: geometry and magnitude squared of the electric field amplitude.

Fig. 4
Fig. 4

Geometry and magnitude squared of the electric field amplitude of an optimized three-layer air-trench bend with 97.6% bend efficiency for TM polarization.

Tables (1)

Tables Icon

Table 1 Parameters of Three Optimized Si Defect Posts

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F=iabsPi-PiM,
F=iC rectxi/WPxi,

Metrics