Abstract

The temporal and spectral profiles of supercontinuum radiation generated from a photonic crystal fiber are evaluated with a polarization-gate frequency-resolved optical gating technique. The supercontinuum is then applied to coherent inverse Raman spectroscopy. A stimulated Raman signal of cyclohexane is observed as an induced absorption signal with an instantaneous response. The Raman signal has a peak at a slight negative delay time, which is explained by perturbed Raman-induced coherence.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
    [CrossRef]
  2. J. Ranka, R. Windeler, and A. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  3. R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
    [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. Ranka, and R. Windeler, Opt. Lett. 26, 608 (2001).
    [CrossRef]
  5. V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, Rev. Sci. Instrum. 73, 4145 (2002).
    [CrossRef]
  6. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, Opt. Lett. 27, 1174 (2002).
    [CrossRef]
  7. D. J. Kane and R. Trebino, Opt. Lett. 18, 823 (1993).
    [CrossRef] [PubMed]
  8. B. R. Washburn, S. E. Ralph, and R. Windeler, Opt. Express 10, 575 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  9. The GVD curve of the PCF for the fundamental mode was calculated by Crystal Fibre A/S and NKT-Research (unpublished result, http://www.crystal-fibre.com).
  10. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).
  11. E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
    [CrossRef]
  12. D. J. Ulness, J. C. Kirwood, and A. C. Albrecht, J. Chem. Phys. 108, 3897 (1998).
  13. H. Hamaguchi and T. L. Gustafson, Annu. Rev. Phys. Chem. 45, 593 (1994).
  14. C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork, and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
    [CrossRef]

2002

2001

2000

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
[CrossRef]

J. Ranka, R. Windeler, and A. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

1998

D. J. Ulness, J. C. Kirwood, and A. C. Albrecht, J. Chem. Phys. 108, 3897 (1998).

1994

H. Hamaguchi and T. L. Gustafson, Annu. Rev. Phys. Chem. 45, 593 (1994).

1993

E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
[CrossRef]

D. J. Kane and R. Trebino, Opt. Lett. 18, 823 (1993).
[CrossRef] [PubMed]

1988

C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork, and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
[CrossRef]

Albrecht, A. C.

D. J. Ulness, J. C. Kirwood, and A. C. Albrecht, J. Chem. Phys. 108, 3897 (1998).

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
[CrossRef]

Becker, P. C.

C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork, and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
[CrossRef]

Brito Cruz, C. H.

C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork, and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
[CrossRef]

Chudoba, C.

Fork, R. L.

C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork, and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
[CrossRef]

Fujimoto, J. G.

Ghanta, R. K.

Gordon, J. P.

C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork, and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
[CrossRef]

Gu, X.

Gustafson, T. L.

H. Hamaguchi and T. L. Gustafson, Annu. Rev. Phys. Chem. 45, 593 (1994).

Hamaguchi, H.

H. Hamaguchi and T. L. Gustafson, Annu. Rev. Phys. Chem. 45, 593 (1994).

Hänsch, T. W.

R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Hartl, I.

Holtzwarth, R.

R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Johnson, E.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, Rev. Sci. Instrum. 73, 4145 (2002).
[CrossRef]

Kane, D. J.

Kano, S. S.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Kimmel, M.

Kirwood, J. C.

D. J. Ulness, J. C. Kirwood, and A. C. Albrecht, J. Chem. Phys. 108, 3897 (1998).

Knight, J. C.

R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
[CrossRef]

Ko, T. H.

Kobayashi, T.

E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
[CrossRef]

Levenson, M. D.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Li, X. D.

Nagarajan, V.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, Rev. Sci. Instrum. 73, 4145 (2002).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
[CrossRef]

Osaka, Y.

E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
[CrossRef]

O'Shea, P.

Parson, W.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, Rev. Sci. Instrum. 73, 4145 (2002).
[CrossRef]

Ralph, S. E.

Ranka, J.

Russell, P. St. J.

R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
[CrossRef]

Schellenberg, P.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, Rev. Sci. Instrum. 73, 4145 (2002).
[CrossRef]

Shank, C. V.

C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork, and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
[CrossRef]

Shreenath, A. P.

Stentz, A.

Terasaki, A.

E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
[CrossRef]

Tokunaga, E.

E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
[CrossRef]

Trebino, R.

Tsunetomo, K.

E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
[CrossRef]

Udem, Th.

R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Ulness, D. J.

D. J. Ulness, J. C. Kirwood, and A. C. Albrecht, J. Chem. Phys. 108, 3897 (1998).

Wada, T.

E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
[CrossRef]

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
[CrossRef]

R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Washburn, B. R.

Windeler, R.

Windeler, R. S.

Xu, L.

Zeek, E.

Annu. Rev. Phys. Chem.

H. Hamaguchi and T. L. Gustafson, Annu. Rev. Phys. Chem. 45, 593 (1994).

IEEE J. Quantum Electron.

C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork, and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000), and references therein.
[CrossRef]

J. Chem. Phys.

D. J. Ulness, J. C. Kirwood, and A. C. Albrecht, J. Chem. Phys. 108, 3897 (1998).

J. Opt. Soc. Am. B

E. Tokunaga, A. Terasaki, T. Wada, K. Tsunetomo, Y. Osaka, and T. Kobayashi, J. Opt. Soc. Am. B 10, 2368 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Holtzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Rev. Sci. Instrum.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, Rev. Sci. Instrum. 73, 4145 (2002).
[CrossRef]

Other

The GVD curve of the PCF for the fundamental mode was calculated by Crystal Fibre A/S and NKT-Research (unpublished result, http://www.crystal-fibre.com).

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Typical spectral profile of the SC generated from a PCF after the sensitivity correction of the detection system. (b) Two-dimensional plot of the PG-FROG trace of the supercontinuum without the sensitivity correction. Brighter regions indicate greater signal intensities.

Fig. 2
Fig. 2

(a) Gate-time dependence (solid curves) and the fitted results (hatched curves) for the five spectral components of the SC. (b) Spectral profile of the group delay (circles and crosses). The main intense peaks for five different wavelengths are plotted. The solid curve represents the fitted result based on Eq. (1).

Fig. 3
Fig. 3

Two-dimensional plot of the inverse Raman signal of cyclohexane as a function of the probe SC wavelength and the temporal delay between the pump and probe pulses. The brighter region indicates greater signal intensities. The temporal and spectral marginals indicated by white broken lines are also depicted at the left side and bottom, respectively. The white solid curve represents the peak position of the signal at each SC wavelength.

Fig. 4
Fig. 4

Spectral profiles of the inverse Raman signal (solid curve) and a calculated result (dotted curve) of the spontaneous Raman signal convoluted with the pump pulse. Inset, spontaneous Raman spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tgλ=L/vgPCFλ+l/vgPolλ.
P3ω,τ=FP3t,τFEput,τ0dti exp-Γt-iΩt×Epu*t-t,τEprt-t.

Metrics