Abstract

We derive conditions for the unique and simultaneous recovery of chromophore concentrations and scattering coefficients in multispectral continuous-wave diffuse optical tomography. These conditions depend strongly on measurement wavelengths. We introduce and demonstrate a general methodology for choosing those wavelengths, which yields superior separation of scattering from absorption and superior separation of one chromophore from another. Application of these concepts should significantly improve the fidelity of continuous-wave diffuse near-infrared optical tomography in tissues.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
    [CrossRef]
  2. S. R. Arridge, Inverse Prob. 15, R41 (1999).
    [CrossRef]
  3. S. R. Arridge and W. R. B. Lionheart, Opt. Lett. 23, 882 (1998).
    [CrossRef]
  4. Y. Xu, X. Gu, T. Khan, and H. Jiang, Appl. Opt. 41, 5427 (2002).
    [CrossRef] [PubMed]
  5. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, Appl. Opt. 39, 6498 (2000).
    [CrossRef]
  6. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, Appl. Opt. 36, 949 (1997).
    [CrossRef] [PubMed]
  7. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
    [CrossRef] [PubMed]
  8. E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, 2002).
  9. S. R. Arridge and M. Schweiger, Opt. Express 2, 213 (1998), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  10. T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, J. Opt. Soc. Am. A 14, 3358 (1997).
    [CrossRef]
  11. D. J. Durian, Opt. Lett. 23, 1502 (1998).
    [CrossRef]
  12. L. N. Trefethen and D. Bau, Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1997).
    [CrossRef]
  13. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
    [CrossRef] [PubMed]
  14. S. Prahl, “Optical Properties Spectra” (Oregon Medical Laser Center, 2001), retrieved March 16, 2003, http://omlc.ogi.edu/spectra/index.html.

2002 (2)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Y. Xu, X. Gu, T. Khan, and H. Jiang, Appl. Opt. 41, 5427 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

S. R. Arridge, Inverse Prob. 15, R41 (1999).
[CrossRef]

1998 (3)

1997 (2)

1995 (1)

A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
[CrossRef]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
[CrossRef] [PubMed]

Arridge, S. R.

Bau, D.

L. N. Trefethen and D. Bau, Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1997).
[CrossRef]

Berger, A. J.

Bevilacqua, F.

Bigio, I. J.

Boas, D. A.

Boyer, J.

Cerussi, A. E.

Chance, B.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, J. Opt. Soc. Am. A 14, 3358 (1997).
[CrossRef]

A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
[CrossRef]

Choe, R.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Culver, J. P.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, J. Opt. Soc. Am. A 14, 3358 (1997).
[CrossRef]

Durian, D. J.

Fuselier, T.

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Gu, X.

Hillman, E. M. C.

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, 2002).

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
[CrossRef] [PubMed]

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Jakubowski, D.

Jiang, H.

Johnson, T. M.

Khan, T.

Lionheart, W. R. B.

Mourant, J. R.

Prahl, S.

S. Prahl, “Optical Properties Spectra” (Oregon Medical Laser Center, 2001), retrieved March 16, 2003, http://omlc.ogi.edu/spectra/index.html.

Schweiger, M.

Trefethen, L. N.

L. N. Trefethen and D. Bau, Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1997).
[CrossRef]

Tromberg, B. J.

Xu, Y.

Yodh, A.

A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
[CrossRef]

Yodh, A. G.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, J. Opt. Soc. Am. A 14, 3358 (1997).
[CrossRef]

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Appl. Opt. (3)

Inverse Prob. (1)

S. R. Arridge, Inverse Prob. 15, R41 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Phys. Today (1)

A. Yodh and B. Chance, Phys. Today 48(3), 34 (1995).
[CrossRef]

Other (3)

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, 2002).

L. N. Trefethen and D. Bau, Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1997).
[CrossRef]

S. Prahl, “Optical Properties Spectra” (Oregon Medical Laser Center, 2001), retrieved March 16, 2003, http://omlc.ogi.edu/spectra/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Wavelength sets with their associated residual norms, R, and condition numbers, κ. Each point represents a set of four wavelengths in the 650–930-nm range. Points 1–3 designate the sets used in the simulations.

Fig. 2
Fig. 2

Reconstructed images for the first target medium. The leftmost column shows images of the target objects; the top row is HbO2, the middle row is HbR, and the bottom row is H2O. Columns correspond to particular wavelength sets.

Fig. 3
Fig. 3

Reconstructed images for the second target medium. Images of HbO2, HbR, H2O, and a are shown in the first, second, third, and fourth rows of the leftmost column, respectively. Columns correspond to particular wavelength sets.

Tables (2)

Tables Icon

Table 1 Chromophore Concentration and Scattering Coefficient Prefactor for Test Objects

Tables Icon

Table 2 Wavelength Sets and Corresponding Condition Numbers (κ) and Residual Norms (R)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

-·DΦω+μa+iωvΦω=qoω.
1hλb,a˜iiλλbΔaa˜ci+Δci=1,
1λ1λ1b2λ1λ1bnλ1λ1b1λmλmb2λmλmbnλmλmb×Δaa˜ha˜c1cn+1ha˜Δc1Δcn=11.
μaλ1μaλm=1λ1nλ11λmnλmc1cn.

Metrics