Abstract

A method for three-dimensional surface measurements with phase-sensitive spectrally encoded imaging is demonstrated. Both transverse and depth information is transmitted through a single-mode optical fiber, allowing this scheme to be incorporated into a miniature probe. This approach is demonstrated by measurement of the profile of a lens surface and by three-dimensional imaging of the face of a small doll.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Y. Cheng and J. C. Wyant, Appl. Opt. 24, 804 (1985).
    [CrossRef]
  2. B. C. Kim and S. W. Kim, Opt. Lett. 28, 528 (2003).
    [CrossRef] [PubMed]
  3. D. P. Hand, T. A. Carolan, J. S. Barton, and J. D. C. Jones, Opt. Lett. 18, 1361 (1993).
    [CrossRef]
  4. P. J. Caber, Appl. Opt. 32, 3438 (1993).
    [CrossRef] [PubMed]
  5. A. V. Zvyagin, I. Eix, and D. D. Sampson, Appl. Opt. 41, 2179 (2002).
    [CrossRef] [PubMed]
  6. T. Dresel, G. Häusler, and H. Venzke, Appl. Opt. 31, 919 (1992).
    [CrossRef] [PubMed]
  7. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, Appl. Opt. 38, 7133 (1999).
    [CrossRef]
  8. M. Chan, W. Lin, C. Zhou, and J. Y. Qu, Appl. Opt. 42, 1888 (2003).
    [CrossRef] [PubMed]
  9. D. Karadaglic, R. Juskaitis, and T. Wilson, Proc. SPIE 4964, 84 (2003).
    [CrossRef]
  10. G. J. Tearney, M. Shishkov, and B. E. Bouma, Opt. Lett. 27, 412 (2002).
    [CrossRef]
  11. W. H. Knox, Appl. Phys. B 58, 225 (1994).
    [CrossRef]
  12. A. P. Kovács, K. Osvey, Zs. Bor, and R. Szipöcs, Opt. Lett. 20, 788 (1995).
    [CrossRef]
  13. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  14. K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, Electron. Lett. 35, 1404 (1999).
    [CrossRef]

2003 (3)

2002 (2)

1999 (2)

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, Electron. Lett. 35, 1404 (1999).
[CrossRef]

Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, Appl. Opt. 38, 7133 (1999).
[CrossRef]

1995 (2)

L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
[CrossRef]

A. P. Kovács, K. Osvey, Zs. Bor, and R. Szipöcs, Opt. Lett. 20, 788 (1995).
[CrossRef]

1994 (1)

W. H. Knox, Appl. Phys. B 58, 225 (1994).
[CrossRef]

1993 (2)

1992 (1)

1985 (1)

Barton, J. S.

Bor, Zs.

Bouma, B. E.

Caber, P. J.

Carolan, T. A.

Chan, M.

Cheng, Y. Y.

Chériaux, G.

L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
[CrossRef]

Donaldson, L.

Dresel, T.

Eix, I.

Gmitro, A. F.

Hand, D. P.

Häusler, G.

Hopkins, M. F.

Joffre, M.

L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
[CrossRef]

Jones, J. D. C.

Juskaitis, R.

D. Karadaglic, R. Juskaitis, and T. Wilson, Proc. SPIE 4964, 84 (2003).
[CrossRef]

Karadaglic, D.

D. Karadaglic, R. Juskaitis, and T. Wilson, Proc. SPIE 4964, 84 (2003).
[CrossRef]

Kim, B. C.

Kim, S. W.

Knox, W. H.

W. H. Knox, Appl. Phys. B 58, 225 (1994).
[CrossRef]

Kovács, A. P.

Lepetit, L.

L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
[CrossRef]

Lin, W.

Osvey, K.

Qu, J. Y.

Rouse, A. R.

Sabharwal, Y. S.

Sampson, D. D.

A. V. Zvyagin, I. Eix, and D. D. Sampson, Appl. Opt. 41, 2179 (2002).
[CrossRef] [PubMed]

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, Electron. Lett. 35, 1404 (1999).
[CrossRef]

Shishkov, M.

Silva, K. K. M. B. D.

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, Electron. Lett. 35, 1404 (1999).
[CrossRef]

Szipöcs, R.

Tearney, G. J.

Venzke, H.

Wilson, T.

D. Karadaglic, R. Juskaitis, and T. Wilson, Proc. SPIE 4964, 84 (2003).
[CrossRef]

Wyant, J. C.

Zhou, C.

Zvyagin, A. V.

A. V. Zvyagin, I. Eix, and D. D. Sampson, Appl. Opt. 41, 2179 (2002).
[CrossRef] [PubMed]

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, Electron. Lett. 35, 1404 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the 3-D spectrally encoded imaging system. ND, neutral density.

Fig. 2
Fig. 2

a, 2-D spectrally encoded interferogram from the curved surface of a lens (f=1 m). b, Profile of the lens (solid curve) measured with our setup agrees with the calculated profile (dashed curve).

Fig. 3
Fig. 3

3-D imaging of a doll’s face. a, Image of the doll’s face obtained with white-light illumination and a standard CCD camera (scale bar 4 mm). b, 2-D spectrally encoded image obtained with the reference arm blocked. c, The surface height, measured by 3-D spectrally encoded imaging, is represented as a gray-scale image, where z values closer to the probe have a higher pixel intensity. d, Surface rendering of the data shown in Fig. 3c. The scale bars in b–d represent 1 mm.

Fig. 4
Fig. 4

a, yz (saggital) section from the middle of the processed data volume adjacent to b, a standard CCD image of the doll’s profile (scale bar 1 mm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Iω=Eω+E0ω2=2A0ω21-cosϕω-ϕ0ω,

Metrics