Abstract

We present a numerical study of stress-induced birefringence in microstructured optical fibers (MOFs), using a finite-element method. MOFs under lateral forces and twists are considered separately. Compared with that in standard single-mode optical fibers, stress-induced linear birefringence in MOFs under a lateral force is reduced with increasing air-hole size, whereas twist-induced circular birefringence in MOFs is enhanced when the air-hole size is small.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  3. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, Opt. Lett. 25, 1325 (2000).
    [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  5. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, Electron. Lett. 37, 560 (2001).
    [CrossRef]
  6. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
    [CrossRef]
  7. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, Opt. Express 9, 698 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  8. R. Ulrich, S. C. Rashleigh, and W. Eickoff, Opt. Lett. 5, 273 (1980).
    [CrossRef] [PubMed]
  9. K. Okamoto, T. Hosaka, and T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
    [CrossRef]
  10. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, Opt. Lett. 24, 276 (1999).
    [CrossRef]
  11. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, J. Lightwave Technol. 17, 2078 (1999).
    [CrossRef]
  12. Z. Zhu and T. G. Brown, Opt. Commun. 206, 333 (2002).
    [CrossRef]
  13. Z. Zhu and T. G. Brown, Opt. Express 10, 853 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  14. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
    [CrossRef]
  15. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef] [PubMed]
  16. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, Opt. Lett. 26, 488 (2001).
    [CrossRef]

2002

2001

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, Opt. Express 9, 698 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, Opt. Lett. 26, 488 (2001).
[CrossRef]

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, Electron. Lett. 37, 560 (2001).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

2000

1999

1997

1996

1981

K. Okamoto, T. Hosaka, and T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

1980

1979

Andres, P.

Arriaga, J.

Atkin, D. M.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Birks, T. A.

Botten, L. C.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Brown, T. G.

de Sterke, C. M.

Edahiro, T.

K. Okamoto, T. Hosaka, and T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Eggleton, B. J.

Eickoff, W.

Ferrando, A.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, Electron. Lett. 37, 560 (2001).
[CrossRef]

Hale, A.

Hosaka, T.

K. Okamoto, T. Hosaka, and T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Kerbage, C.

Knight, J. C.

Mangan, B. J.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

McPhedran, R. C.

Miret, J. J.

Mogilevtsev, D.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, Electron. Lett. 37, 560 (2001).
[CrossRef]

Okamoto, K.

K. Okamoto, T. Hosaka, and T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Ortigosa-Blanch, A.

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Petropoulos, P.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, Electron. Lett. 37, 560 (2001).
[CrossRef]

Ranka, J. K.

Rashleigh, S. C.

Richardson, D. J.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, Electron. Lett. 37, 560 (2001).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Russell, P. St. J.

Silvestre, E.

Simon, A.

Steel, M. J.

Stentz, A. J.

Ulrich, R.

Wadsworth, W. J.

Westbrook, P. S.

White, T. P.

Windeler, R. S.

Zhu, Z.

Appl. Opt.

Electron. Lett.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, Electron. Lett. 37, 560 (2001).
[CrossRef]

IEEE J. Quantum Electron.

K. Okamoto, T. Hosaka, and T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Opt. Commun.

Z. Zhu and T. G. Brown, Opt. Commun. 206, 333 (2002).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Stresses on the x axis in the vicinity of the fiber center. The air-hole radius is 0.6 µm. F=500 N/m. The stresses for a standard SMF are shown as a dotted line σx and as a dotted–dashed line σy.

Fig. 2
Fig. 2

(a) Stress-induced linear birefringence of the MOF as a function of applied force F. The air-hole radius is 0.6 µm. (b) Stress-induced linear birefringence as a function of air-hole radius. F=1000 N/m. The air-hole spacing is 2.3 µm in both (a) and (b).

Fig. 3
Fig. 3

Twist-induced circular birefringence in (a) MOFs as a function of air-hole radius and (b) step-index SMFs as a function of core radius. The air-hole spacing in the MOFs is 2.3 µm. The core (cladding) refractive index of the SMFs is 1.445 (1.430) at λ=1.55 µm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B0=nx0-ny0+C2-C1σx-σy.
Bm=neffx-neffy,
˜4=-n04p44τx,  ˜5=n04p44τy,
Bc=β1E1*·˜E2-iE1z*·˜E2dxdyk0neff2E1x2+E1y2dxdy.
ηk0Bcn02p44τ=n0neff2I1+I2,

Metrics