Abstract

Fiber-optic evanescent-wave spectroscopy (FEWS) is a novel method for measuring the absorption spectra of samples in contact with a segment of an optical fiber that serves as a sensing element. We used a cylindrical IR-transmitting AgClBr fiber whose central section, of length L, was flattened to a thickness d. This section was used as the FEWS sensing element. Our theoretical work predicted that the signals obtained in FEWS measurements should be linearly dependent on L and inversely proportional to d. Decreasing the thickness can significantly increase its sensitivity of the sensor. These theoretical results were verified experimentally by measurements of methanol and water.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corporation, Ossining, N.Y., 1979).
  2. F. M. Mirabella, Internal Reflection Spectroscopy, Theory and Applications (Marcel Dekker, New York, 1993), pp. 17–51.
  3. T. Miyascita and T. Manabe, IEEE J. Quantum Electron. 18, 1432 (1982).
    [CrossRef]
  4. S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, J. Appl. Phys. 64, 3732 (1988).
    [CrossRef]
  5. I. Paiss, D. Bunimovich, and A. Katzir, Appl. Opt. 32, 5867 (1993).
    [CrossRef] [PubMed]
  6. B. Gupta and C. Singh, Appl. Opt. 33, 2737 (1994).
    [CrossRef] [PubMed]
  7. J. Vongsvivut, S. Y. Shilov, S. Ekgasit, and M. S. Braiman, Appl. Spectrosc. 56, 1552 (2002).
    [CrossRef]
  8. H. M. Heise, L. Kupper, and L. N. Butvina, Spectrochim. Acta B 57, 1649 (2002).
    [CrossRef]
  9. M. Karlowatz, M. Kraft, E. Eitenberger, B. Mizaikoff, and A. Katzir, Appl. Spectrosc. 54, 1629 (2000).
    [CrossRef]
  10. A. Messica, A. Greenstein, and A. Katzir, Appl. Opt. 35, 2274 (1996).
    [CrossRef] [PubMed]
  11. B. Gupta, C. Singh, and A. Sharma, Opt. Eng. 33, 1864 (1994).
    [CrossRef]
  12. A. Mignani, R. Falciai, and L. Ciaccheri, Appl. Spectrosc. 53, 546 (1998).
  13. P. Hahn, M. Tacke, M. Jakusch, B. Mizaikoff, O. Spector, and A. Katzir, Appl. Spectrosc. 55, 39 (2001).
    [CrossRef]
  14. V. Ruddy, B. MacCraith, and J. Murphy, J. Appl. Phys. 67, 6070 (1990).
    [CrossRef]

2002 (2)

J. Vongsvivut, S. Y. Shilov, S. Ekgasit, and M. S. Braiman, Appl. Spectrosc. 56, 1552 (2002).
[CrossRef]

H. M. Heise, L. Kupper, and L. N. Butvina, Spectrochim. Acta B 57, 1649 (2002).
[CrossRef]

2001 (1)

2000 (1)

1998 (1)

A. Mignani, R. Falciai, and L. Ciaccheri, Appl. Spectrosc. 53, 546 (1998).

1996 (1)

1994 (2)

B. Gupta, C. Singh, and A. Sharma, Opt. Eng. 33, 1864 (1994).
[CrossRef]

B. Gupta and C. Singh, Appl. Opt. 33, 2737 (1994).
[CrossRef] [PubMed]

1993 (1)

1990 (1)

V. Ruddy, B. MacCraith, and J. Murphy, J. Appl. Phys. 67, 6070 (1990).
[CrossRef]

1988 (1)

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, J. Appl. Phys. 64, 3732 (1988).
[CrossRef]

1982 (1)

T. Miyascita and T. Manabe, IEEE J. Quantum Electron. 18, 1432 (1982).
[CrossRef]

Braiman, M. S.

Bunimovich, D.

Butvina, L. N.

H. M. Heise, L. Kupper, and L. N. Butvina, Spectrochim. Acta B 57, 1649 (2002).
[CrossRef]

Ciaccheri, L.

A. Mignani, R. Falciai, and L. Ciaccheri, Appl. Spectrosc. 53, 546 (1998).

Eitenberger, E.

Ekgasit, S.

Falciai, R.

A. Mignani, R. Falciai, and L. Ciaccheri, Appl. Spectrosc. 53, 546 (1998).

Greenstein, A.

Gupta, B.

B. Gupta, C. Singh, and A. Sharma, Opt. Eng. 33, 1864 (1994).
[CrossRef]

B. Gupta and C. Singh, Appl. Opt. 33, 2737 (1994).
[CrossRef] [PubMed]

Hahn, P.

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corporation, Ossining, N.Y., 1979).

Heise, H. M.

H. M. Heise, L. Kupper, and L. N. Butvina, Spectrochim. Acta B 57, 1649 (2002).
[CrossRef]

Jakusch, M.

Karlowatz, M.

Katzir, A.

Kosower, E. M.

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, J. Appl. Phys. 64, 3732 (1988).
[CrossRef]

Kraft, M.

Kupper, L.

H. M. Heise, L. Kupper, and L. N. Butvina, Spectrochim. Acta B 57, 1649 (2002).
[CrossRef]

MacCraith, B.

V. Ruddy, B. MacCraith, and J. Murphy, J. Appl. Phys. 67, 6070 (1990).
[CrossRef]

Manabe, T.

T. Miyascita and T. Manabe, IEEE J. Quantum Electron. 18, 1432 (1982).
[CrossRef]

Messica, A.

Mignani, A.

A. Mignani, R. Falciai, and L. Ciaccheri, Appl. Spectrosc. 53, 546 (1998).

Mirabella, F. M.

F. M. Mirabella, Internal Reflection Spectroscopy, Theory and Applications (Marcel Dekker, New York, 1993), pp. 17–51.

Miyascita, T.

T. Miyascita and T. Manabe, IEEE J. Quantum Electron. 18, 1432 (1982).
[CrossRef]

Mizaikoff, B.

Murphy, J.

V. Ruddy, B. MacCraith, and J. Murphy, J. Appl. Phys. 67, 6070 (1990).
[CrossRef]

Paiss, I.

Ruddy, V.

V. Ruddy, B. MacCraith, and J. Murphy, J. Appl. Phys. 67, 6070 (1990).
[CrossRef]

Schnitzer, I.

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, J. Appl. Phys. 64, 3732 (1988).
[CrossRef]

Sharma, A.

B. Gupta, C. Singh, and A. Sharma, Opt. Eng. 33, 1864 (1994).
[CrossRef]

Shilov, S. Y.

Simhony, S.

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, J. Appl. Phys. 64, 3732 (1988).
[CrossRef]

Singh, C.

B. Gupta and C. Singh, Appl. Opt. 33, 2737 (1994).
[CrossRef] [PubMed]

B. Gupta, C. Singh, and A. Sharma, Opt. Eng. 33, 1864 (1994).
[CrossRef]

Spector, O.

Tacke, M.

Vongsvivut, J.

Appl. Opt. (3)

Appl. Spectrosc. (4)

IEEE J. Quantum Electron. (1)

T. Miyascita and T. Manabe, IEEE J. Quantum Electron. 18, 1432 (1982).
[CrossRef]

J. Appl. Phys. (2)

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, J. Appl. Phys. 64, 3732 (1988).
[CrossRef]

V. Ruddy, B. MacCraith, and J. Murphy, J. Appl. Phys. 67, 6070 (1990).
[CrossRef]

Opt. Eng. (1)

B. Gupta, C. Singh, and A. Sharma, Opt. Eng. 33, 1864 (1994).
[CrossRef]

Spectrochim. Acta B (1)

H. M. Heise, L. Kupper, and L. N. Butvina, Spectrochim. Acta B 57, 1649 (2002).
[CrossRef]

Other (2)

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corporation, Ossining, N.Y., 1979).

F. M. Mirabella, Internal Reflection Spectroscopy, Theory and Applications (Marcel Dekker, New York, 1993), pp. 17–51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorbance spectra of methanol obtained with flattened fibers of different thickness: a, d=0.32 mm; b, d=0.27 mm; c, d=0.21 mm; and d, d=0.19 mm.

Fig. 2
Fig. 2

Ray tracing within the tapered section of the fiber.

Fig. 3
Fig. 3

Dependence of the absorbance signal, normalized for the wavelength and for the inverse thickness of the planar (flattened) segment of the fiber.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Pz=P0exp-γefz.
γef=θdθuFθγθdθθdθuFθdθ.
γθ=αλnf cos2 θdnf2-ne2sin2 θ-ne2/nf21/2.
Fθsin θ cos θ1-nf2 cos2 θ2.
m=0,  α0=0αarctand2l=α, m=1,  α1αarctanΦdd2l=α2, tan Ω=D-d2l, Φd=1+cos2 Ωcos 2Ω1+D+d2ltan 2Ω-1.
αmarctansin mΩD/d-cos mΩ.
αmαarcsinNAnf,
θ1d=π/2-α1,  θ1u=π/2,
θ2d=π/2-α2-2Ω, θ2u=π/2-α1-2Ω,
θmd=π/2-2mΩ-arcsinNA/nf,
θmu=π/2-αm-2mΩ.
γef=i=1mθidθiuFθγθdθθidθiuFθdθ.

Metrics