Abstract

Ray theory plays an important role in determining the propagation properties of high-frequency fields and their statistical measures in complicated random environments. For computations of the statistical measures it is therefore desirable to have a solution for the high-frequency field propagating along an isolated ray trajectory. A new reference wave is applied to obtain an analytic solution of the parabolic wave equation that describes propagation along the ray trajectory of the deterministic-background medium. The methodology is based on defining a paired-field measure as a product of an unknown field propagating in a disturbed medium and the complex-conjugate component propagating in a medium without random fluctuations. When a solution of the equation for the paired-field measure is obtained, the solution of the deterministic component can be extracted from the paired solution to determine the solution of the unknown field in an explicit form.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Modeling of high-frequency wave propagation with application to the double-passage imaging in random media

R. Mazar, L. Kodner, and G. Samelsohn
J. Opt. Soc. Am. A 14(10) 2809-2819 (1997)

High-frequency propagators for diffraction and backscattering in random media

Reuven Mazar
J. Opt. Soc. Am. A 7(1) 34-46 (1990)

Edge diffraction of high-frequency coherence functions in a random medium

R. Mazar and L. B. Felsen
Opt. Lett. 12(1) 4-6 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription