Abstract

We compensated for chirp of optical pulses with an over-one-octave bandwidth (495–1090 nm; center wavelength of 655.4 nm) produced by self-phase modulation in a single argon-filled hollow fiber and generated 3.4-fs, 1.56 optical-cycle pulses (500 nJ, 1-kHz repetition rate). This was achieved with a feedback system combined with only one 4f phase compensator with a spatial light modulator and a significantly improved phase characterizer based on modified spectral phase interferometry for direct electric-field reconstruction. To the best of our knowledge, this is the shortest pulse in the visible-to-infrared region.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription