Abstract

A 20-W all-solid-state continuous-wave single-frequency source tuned to the sodium D2a line at 589.159 nm has been developed for adaptive optical systems. This source is based on sum-frequency mixing two injection-locked Nd:YAG lasers in lithium triborate in a doubly resonant external cavity. Injection locking the Nd:YAG lasers not only ensures single-frequency operation but also allows the use of a single rf local oscillator for Pound–Drever–Hall locking both the injection–slave and the sum-frequency cavities. We observe power-conversion efficiencies in excess of 55% and a linearly polarized diffraction-limited output tunable across the sodium D2 line (589.156 to 589.160 nm) with no change in output power and with high amplitude and pointing stability.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription