Abstract

A new nondestructive method for measuring the spatial distribution of chromatic dispersion along an optical fiber is presented. It is based on using Brillouin optical time-domain analysis to probe the power distribution of the four-wave mixing generated by two continuous-wave lasers. The results obtained prove that this new method is capable of providing better performance than comparable techniques. Furthermore, sensing the variations of Brillouin gain maximum produces additional information about the fiber, such as presence of strain and concentration of GeO2.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, J. Opt. Soc. Am. B 19, 2538 (2002).
    [CrossRef]
  2. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Grüner-Nielsen, and T. Veng, Opt. Lett. 25, 704 (2000).
    [CrossRef]
  3. S. Nishi and M. Saruwatari, Electron. Lett. 21, 579 (1996).
    [CrossRef]
  4. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 21, 1724 (1996).
    [CrossRef] [PubMed]
  5. I. Brener, P. P. Mitra, D. D. Lee, D. J. Thomson, and D. L. Philen, Opt. Lett. 23, 1520 (1998).
    [CrossRef]
  6. M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
    [CrossRef]
  7. M. González-Herráez, P. Corredera, M. L. Hernanz, and J. A. Méndez, Opt. Lett. 27, 1546 (2002).
    [CrossRef]
  8. M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  9. M. C. Ho, M. Marhic, K. Y. K. Wong, and L. G. Kazovsky, J. Lightwave Technol. 20, 469 (2002).
    [CrossRef]

2002 (3)

2000 (1)

1998 (1)

1997 (2)

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1996 (2)

Brener, I.

Chertkov, M.

M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, J. Opt. Soc. Am. B 19, 2538 (2002).
[CrossRef]

Corredera, P.

Eiselt, M.

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

Gabitov, I.

M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, J. Opt. Soc. Am. B 19, 2538 (2002).
[CrossRef]

González-Herráez, M.

Gripp, J.

Grüner-Nielsen, L.

Hernanz, M. L.

Ho, M. C.

Jopson, R. M.

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

Kazovsky, L. G.

Lee, D. D.

Lushnikov, P. M.

M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, J. Opt. Soc. Am. B 19, 2538 (2002).
[CrossRef]

Mamyshev, P. V.

Mamysheva, N.

Marhic, M.

Méndez, J. A.

Mitra, P. P.

Moeser, J.

M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, J. Opt. Soc. Am. B 19, 2538 (2002).
[CrossRef]

Mollenauer, L. F.

Neubelt, M. J.

Niklès, M.

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Nishi, S.

S. Nishi and M. Saruwatari, Electron. Lett. 21, 579 (1996).
[CrossRef]

Philen, D. L.

Robert, Ph.

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Saruwatari, M.

S. Nishi and M. Saruwatari, Electron. Lett. 21, 579 (1996).
[CrossRef]

Stolen, R. H.

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Thomson, D. J.

Toroczkai, Z.

M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, J. Opt. Soc. Am. B 19, 2538 (2002).
[CrossRef]

Veng, T.

Wong, K. Y. K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: EOM, electro-optical modulator; EDFAs, erbium-doped fiber amplifiers. The BOTDA operates near 1555 nm, and the pulse length is 1 µs.

Fig. 2
Fig. 2

Possible arrangement of the three wavelengths. ΔλB is the Brillouin shift.

Fig. 3
Fig. 3

BOTDA trace obtained for a 4.6-km standard fiber with a CD of 16.2 ps nm-1 km-1 at the wavelength of the instrument. Δλ=1.37 nm. The period of the oscillation in this case is 260 m.

Fig. 4
Fig. 4

Detail of the BOTDA trace obtained for a 10.34-km nonzero dispersion-shifted fiber with an end-to-end CD of 5.3 ps nm-1 km-1. Δλ=1.96 nm. The period of the oscillation in this case is 390 m.

Fig. 5
Fig. 5

CD map of the fiber whose trace appears in Fig. 4, computed from traces obtained from both fiber ends. The acquisitions were performed with Δλ=2.12 nm.

Fig. 6
Fig. 6

Superposition of the traces obtained for a concatenation of three standard fibers for three values of IK.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PFWMz1Δβ2 sin2Δβz2,
Δβ=2πcΔλ/λ2DλI.
ΔPAz=g/AeffPAzPPzΔz,

Metrics