Abstract

Standard Fourier-domain optical coherence tomography (FDOCT) suffers from the presence of autocorrelation terms that obscure the object information and degrade the sensitivity and signal-to-noise ratio. By exploiting the phase information of the recorded interferograms, it is possible to remove those autocorrelation terms and to double the measurement range. However, standard phase-retrieval algorithms need three to five interferograms. We present a novel technique that shows all the features of complex FDOCT with only two recorded interferograms.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Leitgeb, C. K. Kitzenberger, and A. F. Fercher, Opt. Express 11, 889 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  2. M. Wojtkowski, A. Kowalczyk, and R. Leitgeb, A. F. Fercher, Opt. Lett. 27, 1415 (2002).
    [CrossRef]
  3. A. F. Fercher and C. K. Hitzenberger, Prog. Opt. 44, 215 (2002).
    [CrossRef]
  4. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. de Boer, and J. Nelson, Opt. Lett. 25, 1358 (2000).
    [CrossRef]

2003 (1)

2002 (2)

2000 (1)

1965 (1)

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

Bracewell, R.

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

Chen, Z.

de Boer, J.

Fercher, A. F.

Hitzenberger, C. K.

A. F. Fercher and C. K. Hitzenberger, Prog. Opt. 44, 215 (2002).
[CrossRef]

Kitzenberger, C. K.

Kowalczyk, A.

Leitgeb, R.

Leitgeb, R. A.

Nelson, J.

Saxer, C.

Wojtkowski, M.

Xiang, S.

Zhao, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Reference mirror distance relative to object. (b) Signal profile after a discrete Fourier transform; the dotted peaks are coherent noise terms and the dc peak, and the solid ones represent the object structure. (c) Signal profile of complex signals. (d) Final OCT profile result after the subtraction scheme.

Fig. 2
Fig. 2

Experimental setup: SLD, superluminescent diode; M, mirror; SC, transverse scanner; OL, objective lens; S, sample; L, lens; PZT, piezo translator; FPC, polarization controller; DG, diffraction grating; CL, camera lens; SYNC, synchronization module; FCs, fiber collimators.

Fig. 3
Fig. 3

(a) Standard FDOCT profile of artificial eye. (b) FDOCT profile after the novel complex FDOCT algorithm. (c) Standard FDOCT tomogram of a model eye. (d) Complex FDOCT tomogram (linear intensity scales).

Fig. 4
Fig. 4

Change in complex FDOCT signal amplitude I/I0 (solid line) as a result of interferometer jitter and mean phase error δφ¯ (dashed line), depending on the spectral range resulting from polychromatic phase shifting.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FT-1Iν=Γrrτ+nΓnnτ+Ξ+τ+Ξ-τ+Ψ+τ+Ψ-τ,
cos±2πνΔz/cFT12δτ-Δz/c+δτ+Δz/c,
i cos±2πνΔz/c+π/2FT12δτ-Δz/c±δτ+Δz/c.
I˜ν=Iν±iIν,Δφ=π/2.

Metrics