Abstract

We present a general method for continuously measuring and compensating for offsets (due to residual amplitude modulation, parasitic resonances, or electronic offset voltages, for example) in frequency stabilization systems. The spectral power distribution of the oscillator waveform is modified by amplitude-modulated sidebands, and the error signal is corrected to null the induced periodic lock-point shifts. We demonstrate significant improvements to the frequency stability of standards based on cryogenic optical resonators and molecular iodine.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Müller, S. Herrmann, and A. Peters, German patent application 103 10 076.8 (March 6, 2003).
  2. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  3. G. C. Bjorklund, Opt. Lett. 5, 15 (1980).
    [CrossRef]
  4. J. H. Shirley, Opt. Lett. 7, 537 (1982).
    [CrossRef] [PubMed]
  5. H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, Phys. Rev. Lett. 91, 020401 (2003).
    [CrossRef]
  6. S. Seel, R. Storz, G. Rouso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997).
    [CrossRef]
  7. R. Storz, C. Braxmaier, K. Jäck, O. Pradl, and S. Schiller, Opt. Lett. 23, 1031 (1998).
    [CrossRef]
  8. C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 88, 010401 (2001).
    [CrossRef]
  9. P. L. Bender, J. L. Hall, and W. M. Klipstein, Space Sci. Rev. 00, 1 (2003).

2003 (2)

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, Phys. Rev. Lett. 91, 020401 (2003).
[CrossRef]

P. L. Bender, J. L. Hall, and W. M. Klipstein, Space Sci. Rev. 00, 1 (2003).

2001 (1)

C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 88, 010401 (2001).
[CrossRef]

1998 (1)

1997 (1)

S. Seel, R. Storz, G. Rouso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1982 (1)

1980 (1)

Bender, P. L.

P. L. Bender, J. L. Hall, and W. M. Klipstein, Space Sci. Rev. 00, 1 (2003).

Bjorklund, G. C.

Braxmaier, C.

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, Phys. Rev. Lett. 91, 020401 (2003).
[CrossRef]

C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 88, 010401 (2001).
[CrossRef]

R. Storz, C. Braxmaier, K. Jäck, O. Pradl, and S. Schiller, Opt. Lett. 23, 1031 (1998).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hall, J. L.

P. L. Bender, J. L. Hall, and W. M. Klipstein, Space Sci. Rev. 00, 1 (2003).

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Herrmann, S.

H. Müller, S. Herrmann, and A. Peters, German patent application 103 10 076.8 (March 6, 2003).

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, Phys. Rev. Lett. 91, 020401 (2003).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Jäck, K.

Klipstein, W. M.

P. L. Bender, J. L. Hall, and W. M. Klipstein, Space Sci. Rev. 00, 1 (2003).

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Mlynek, J.

C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 88, 010401 (2001).
[CrossRef]

S. Seel, R. Storz, G. Rouso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997).
[CrossRef]

Müller, H.

H. Müller, S. Herrmann, and A. Peters, German patent application 103 10 076.8 (March 6, 2003).

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, Phys. Rev. Lett. 91, 020401 (2003).
[CrossRef]

C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 88, 010401 (2001).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Peters, A.

H. Müller, S. Herrmann, and A. Peters, German patent application 103 10 076.8 (March 6, 2003).

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, Phys. Rev. Lett. 91, 020401 (2003).
[CrossRef]

Pradl, O.

C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 88, 010401 (2001).
[CrossRef]

R. Storz, C. Braxmaier, K. Jäck, O. Pradl, and S. Schiller, Opt. Lett. 23, 1031 (1998).
[CrossRef]

Rouso, G.

S. Seel, R. Storz, G. Rouso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997).
[CrossRef]

Schiller, S.

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, Phys. Rev. Lett. 91, 020401 (2003).
[CrossRef]

C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 88, 010401 (2001).
[CrossRef]

R. Storz, C. Braxmaier, K. Jäck, O. Pradl, and S. Schiller, Opt. Lett. 23, 1031 (1998).
[CrossRef]

S. Seel, R. Storz, G. Rouso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997).
[CrossRef]

Seel, S.

S. Seel, R. Storz, G. Rouso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997).
[CrossRef]

Shirley, J. H.

Storz, R.

R. Storz, C. Braxmaier, K. Jäck, O. Pradl, and S. Schiller, Opt. Lett. 23, 1031 (1998).
[CrossRef]

S. Seel, R. Storz, G. Rouso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (3)

C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 88, 010401 (2001).
[CrossRef]

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, Phys. Rev. Lett. 91, 020401 (2003).
[CrossRef]

S. Seel, R. Storz, G. Rouso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997).
[CrossRef]

Space Sci. Rev. (1)

P. L. Bender, J. L. Hall, and W. M. Klipstein, Space Sci. Rev. 00, 1 (2003).

Other (1)

H. Müller, S. Herrmann, and A. Peters, German patent application 103 10 076.8 (March 6, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Computed PDH signal in reflection, with βm=1, ωm/2π=3B (B is the resonator linewidth), 14% incoupling efficiency, and an on offset Uoff due to residual AM in phase with the PM with 1.4% peak modulation depth that shifts the zero crossing of Uerr (lock point) by ϵoff. (b) Error signal amplitude, but not the offset, reduced by shifting a fraction of the oscillator power into sidebands while keeping the total power constant.

Fig. 2
Fig. 2

Setup: A laser is coupled to the CORE via a window in the cryostat. The beat frequency is measured by overlapping with the beam from the second CORE-stabilized laser (not shown) on a high-speed photodetector. DBM, double-balanced mixer; PD, photodetector; f/v, frequency-to-voltage converter; ADD, summing amplifier; OC, offset compensation.

Fig. 3
Fig. 3

(a) 18-h beat measurement between two CORE-stabilized lasers with OCAMS. 1-min averages are shown. The lower curve shows the measured data, and the upper curve shows the same measurement with the OCAMS correction for one laser subtracted with an offset of 280 Hz and greater fluctuations. The few gaps in the data are caused by automatic refills of liquid nitrogen into the cryostat. (b) RAV calculated from the central 10 h of these data, starting at 9 h. Lower curve, with OCAMS; upper curve, without.

Fig. 4
Fig. 4

(a) Frequency variations of the iodine standard with OCAMS (1-min averages). The lower curve shows the measured data, and the upper curve shows the reconstructed data without OCAMS with an offset of approximately -16 kHz. (b) RAV calculated from the first 7 h of these data. Lower curve, with OCAMS; upper curve, without.

Tables (1)

Tables Icon

Table 1 Measured CORE Standard Frequency Changes Without OCAMS δIν and With OCAMS δIOCAν Caused by Manual Variation of Various Parameters by Amounts of δI

Metrics