Abstract

Beginning with a recently formulated unified theory of coherence and polarization for random electromagnetic fields, we show how partially polarized light can be generated through correlation of unpolarized components. The effect is demonstrated by use of a Mach–Zehnder interferometer, showing the possibility of producing light with adjustable spectral density and an adjustable degree of polarization.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Phys. Rev. Lett. 56, 1370 (1986).
    [CrossRef] [PubMed]
  2. D. F. V. James, J. Opt. Soc. Am. A 11, 1641 (1994).
    [CrossRef]
  3. A. Dogariu and E. Wolf, J. Mod. Opt. 50, 1791 (2003).
    [CrossRef]
  4. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  5. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, England, 1995), Sect. 4.7.2.
    [CrossRef]
  6. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

2003

A. Dogariu and E. Wolf, J. Mod. Opt. 50, 1791 (2003).
[CrossRef]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

2001

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

1995

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, England, 1995), Sect. 4.7.2.
[CrossRef]

1994

1986

E. Wolf, Phys. Rev. Lett. 56, 1370 (1986).
[CrossRef] [PubMed]

Dogariu, A.

A. Dogariu and E. Wolf, J. Mod. Opt. 50, 1791 (2003).
[CrossRef]

James, D. F. V.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, England, 1995), Sect. 4.7.2.
[CrossRef]

Wolf, E.

A. Dogariu and E. Wolf, J. Mod. Opt. 50, 1791 (2003).
[CrossRef]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, England, 1995), Sect. 4.7.2.
[CrossRef]

E. Wolf, Phys. Rev. Lett. 56, 1370 (1986).
[CrossRef] [PubMed]

Wu, S. T.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

J. Mod. Opt.

A. Dogariu and E. Wolf, J. Mod. Opt. 50, 1791 (2003).
[CrossRef]

J. Opt. Soc. Am. A

Phys. Lett. A

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Phys. Rev. Lett.

E. Wolf, Phys. Rev. Lett. 56, 1370 (1986).
[CrossRef] [PubMed]

Other

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, England, 1995), Sect. 4.7.2.
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Mach–Zehnder interferometer: BS1, BS2, nonpolarizing beam splitters; M1, M2, mirrors; PM x, PM y, phase modulators that control the phase along the x and y directions, respectively.

Fig. 2
Fig. 2

Measured spectral density (dots) together with the prediction of Eq. (12) for our experimental situation (solid curve). Also shown by a dotted line is the spectral density of the light source.

Fig. 3
Fig. 3

Measured spectral degree of polarization (dots) together with the prediction of Eq. (14) for our experimental arrangement (solid curve).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ExC*ExC=EyC*EyC,
ExC*EyC=0,
ET=ExA+ExBxˆ+EyA+EyByˆ,
W̲Tr1,r2=ET*r1ETr2=EiAr1+EiBr1*×EjAr2+EjBr2,
W̲Tr1,r2=W̲Ar1,r2+W̲Br1,r2+W̲A,Br1,r2+W̲B,Ar1,r2,
STr=TrW̲Tr,r
PTr=1-4 DetW̲Tr,rTrW̲Tr,r21/2
ST=SA+SB+2 Re SA,B,
ST=SA+SB+2 Re SxA,B+2 Re SyA,B,
PT=2Re SxA,B-Re SyA,BSA+SB+2 Re SxA,B+2 Re SyA,B.
ψV,λ=2πλdGVλ2λ*2λ2-λ*2,
ST=SA+SB+2SxASxB1/2 cosψx+2SyASyB1/2 cosψy,
PexpT=SxT-SyTSxT+SyT,
PT=2SxASxB1/2 cosψx-SyASyB1/2 cosψyST,

Metrics