Abstract

We demonstrate an electro-optic Solc-type wavelength filter in periodically poled lithium niobate (PPLN). A Solc-type transmission spectrum is observed experimentally in PPLN with four periods from 20.2 to 20.8 µm. Modulation of the transmission power of the filter is realized by application of electric fields along the Y axis of the PPLN. It is observed that the wavelength can also be tuned by temperature.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (Wiley, New York, 1984).
  2. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77,3719 (2000).
    [CrossRef]
  3. D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
    [CrossRef]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12,2102 (1995).
    [CrossRef]
  5. K. Mizuuchi and K. Yamamoto, Opt. Lett. 23,1880 (1998).
    [CrossRef]
  6. D. H. Jundt, Opt. Lett. 22,1553 (1997).
    [CrossRef]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77,3719 (2000).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1979 (1)

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

Abrams, R. L.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Eckardt, R. C.

Fejer, M. M.

Henderson, D. M.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

Jundt, D. H.

Lotspeich, J. F.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77,3719 (2000).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77,3719 (2000).
[CrossRef]

Mizuuchi, K.

Myers, L. E.

Pierce, J. W.

Pinnow, D. R.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

Plant, T. K.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

Stephens, R. R.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

Walker, C. M.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77,3719 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77,3719 (2000).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77,3719 (2000).
[CrossRef]

Yamamoto, K.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Appl. Phys. Lett. (2)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77,3719 (2000).
[CrossRef]

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,391 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for a PPLN Solc wavelength filter. A PPLN crystal is placed between two crossed polarizers. The PPLN crystal is Z cut, and the light propagates along the X direction. A uniform electric field is applied along the Y axis of the PPLN sample. ASE, amplified spontaneous emission; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Measured transmission power versus wavelength of the Solc filter in the 20.6- and 20.8µm-period PPLN at a temperature of 24 °C. The FWHM of the transmission spectrum is 0.8 nm.

Fig. 3
Fig. 3

Experimental measurement of the normalized transmission of the Solc filter (20.8 µm) as a function of the applied voltage at 24 °C for a given wavelength of 1529.80 nm. The solid curve is the experimental measurement, the dashed curve represents the theoretical values calculated from the Sellmeier equation from Ref. 6, and the dotted curve is phase shifted from the dashed curve for comparison with the experiment.

Fig. 4
Fig. 4

Experimental measurement of the central wavelength of the Solc filter (20.8 µm) as a function of the temperature without the applied external electric voltage. The dashed line represents the theoretical values calculated from the Sellmeier equation from Ref. 6, and the solid curve is the experimental measurement.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ0=22m+1no-ned, m=0,1,2,,
Δλ1/2=1.60λ0/2ν+1N,
θγ51E1/ne2-1/no2,

Metrics