Abstract

Tunable laser action in the visible spectrum has been established for what is believed to be the first time by use of dye-doped, polymer–silica nanoparticle gain media. The silica nanoparticles, ranging from 9 to 12 nm in diameter, appear to be uniformly dispersed in the poly(methyl methacrylate) matrix because the optical homogeneity of the gain medium is maintained. With Rhodamine 6G dye and 30% weight-by-weight silica nanoparticles, laser action was established in the 567–603-nm range. At the peak wavelength λ580 nm, laser conversion efficiency is 63% at a beam divergence of 1.9 mrad (1.3 times the diffraction limit). The new solid-state gain medium also exhibits a reduction in n/T.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, Appl. Opt. 33, 3857 (1994).
    [CrossRef] [PubMed]
  2. F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
    [CrossRef]
  3. F. J. Duarte, Opt. Commun. 117, 480 (1995).
    [CrossRef]
  4. F. J. Duarte, Appl. Opt. 38, 6347 (1999).
    [CrossRef]
  5. F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, Appl. Opt. 39, 6522 (2000).
  6. A. Costela, I. Garcia-Moreno, and R. Sastre, in Handbook of Advanced Electronic and Photonic Material: Liquid Crystals, Display and Laser Materials, H. S. Nalwa, ed. (Academic, New York, 2001), pp. 161–208.
    [CrossRef]
  7. W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).
  8. B. Dunn, J. D. Mckenzie, J. I. Zink, O. M. Stafsudd, Proc. SPIE 1328, 174 (1990).
    [CrossRef]
  9. F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, and J. C. McDonald, in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.
  10. F. J. Duarte and E. J. A. Pope, Ceram. Trans. 55, 267 (1995).
  11. F. J. Duarte, R. O. James, and L. A. Rowley, “Dye-doped polymer nanometer gain medium for use in a laser,” U.S. patent application (December 22, 2002).
  12. A. Maslyukov, S. Solkolov, M. Kaivola, K. Nyholm, and S. Popov, Appl. Opt. 34, 1516 (1995).
    [CrossRef] [PubMed]
  13. S. Popov, Pure Appl. Opt. 7, 1379 (1998).
    [CrossRef]
  14. A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Appl. Phys. B 75, 827 (2002).
    [CrossRef]
  15. A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Chem. Phys. Lett. 369, 656 (2003).

2003

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Chem. Phys. Lett. 369, 656 (2003).

2002

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Appl. Phys. B 75, 827 (2002).
[CrossRef]

2000

F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, Appl. Opt. 39, 6522 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

1999

1998

S. Popov, Pure Appl. Opt. 7, 1379 (1998).
[CrossRef]

1997

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
[CrossRef]

1995

F. J. Duarte, Opt. Commun. 117, 480 (1995).
[CrossRef]

F. J. Duarte and E. J. A. Pope, Ceram. Trans. 55, 267 (1995).

A. Maslyukov, S. Solkolov, M. Kaivola, K. Nyholm, and S. Popov, Appl. Opt. 34, 1516 (1995).
[CrossRef] [PubMed]

1994

1990

B. Dunn, J. D. Mckenzie, J. I. Zink, O. M. Stafsudd, Proc. SPIE 1328, 174 (1990).
[CrossRef]

Costela, A.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Chem. Phys. Lett. 369, 656 (2003).

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Appl. Phys. B 75, 827 (2002).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, Appl. Opt. 39, 6522 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, and R. Sastre, in Handbook of Advanced Electronic and Photonic Material: Liquid Crystals, Display and Laser Materials, H. S. Nalwa, ed. (Academic, New York, 2001), pp. 161–208.
[CrossRef]

Davenport, W. E.

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, and J. C. McDonald, in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Duarte, F. J.

F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, Appl. Opt. 39, 6522 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

F. J. Duarte, Appl. Opt. 38, 6347 (1999).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
[CrossRef]

F. J. Duarte, Opt. Commun. 117, 480 (1995).
[CrossRef]

F. J. Duarte and E. J. A. Pope, Ceram. Trans. 55, 267 (1995).

F. J. Duarte, Appl. Opt. 33, 3857 (1994).
[CrossRef] [PubMed]

F. J. Duarte, R. O. James, and L. A. Rowley, “Dye-doped polymer nanometer gain medium for use in a laser,” U.S. patent application (December 22, 2002).

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, and J. C. McDonald, in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Dunn, B.

B. Dunn, J. D. Mckenzie, J. I. Zink, O. M. Stafsudd, Proc. SPIE 1328, 174 (1990).
[CrossRef]

Ehrlich, J. J.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
[CrossRef]

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, and J. C. McDonald, in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Garcia, O.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Chem. Phys. Lett. 369, 656 (2003).

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Appl. Phys. B 75, 827 (2002).
[CrossRef]

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Chem. Phys. Lett. 369, 656 (2003).

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Appl. Phys. B 75, 827 (2002).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, Appl. Opt. 39, 6522 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, and R. Sastre, in Handbook of Advanced Electronic and Photonic Material: Liquid Crystals, Display and Laser Materials, H. S. Nalwa, ed. (Academic, New York, 2001), pp. 161–208.
[CrossRef]

Gomez, C.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Chem. Phys. Lett. 369, 656 (2003).

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Appl. Phys. B 75, 827 (2002).
[CrossRef]

Gratz, H.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

Holzer, W.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

James, R. O.

F. J. Duarte, R. O. James, and L. A. Rowley, “Dye-doped polymer nanometer gain medium for use in a laser,” U.S. patent application (December 22, 2002).

Kaivola, M.

Maslyukov, A.

McDonald, J. C.

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, and J. C. McDonald, in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Mckenzie, J. D.

B. Dunn, J. D. Mckenzie, J. I. Zink, O. M. Stafsudd, Proc. SPIE 1328, 174 (1990).
[CrossRef]

Nyholm, K.

Penzkofer, A.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

Pope, E. J. A.

F. J. Duarte and E. J. A. Pope, Ceram. Trans. 55, 267 (1995).

Popov, S.

Rowley, L. A.

F. J. Duarte, R. O. James, and L. A. Rowley, “Dye-doped polymer nanometer gain medium for use in a laser,” U.S. patent application (December 22, 2002).

Sastre, R.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Chem. Phys. Lett. 369, 656 (2003).

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Appl. Phys. B 75, 827 (2002).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, Appl. Opt. 39, 6522 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, and R. Sastre, in Handbook of Advanced Electronic and Photonic Material: Liquid Crystals, Display and Laser Materials, H. S. Nalwa, ed. (Academic, New York, 2001), pp. 161–208.
[CrossRef]

Schmitt, T.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

Solkolov, S.

Stafsudd, O. M.

B. Dunn, J. D. Mckenzie, J. I. Zink, O. M. Stafsudd, Proc. SPIE 1328, 174 (1990).
[CrossRef]

Taylor, T. S.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
[CrossRef]

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, and J. C. McDonald, in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Zink, J. I.

B. Dunn, J. D. Mckenzie, J. I. Zink, O. M. Stafsudd, Proc. SPIE 1328, 174 (1990).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Appl. Phys. B 75, 827 (2002).
[CrossRef]

Ceram. Trans.

F. J. Duarte and E. J. A. Pope, Ceram. Trans. 55, 267 (1995).

Chem. Phys.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, and F. J. Duarte, Chem. Phys. 256, 125 (2000).

Chem. Phys. Lett.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, Chem. Phys. Lett. 369, 656 (2003).

Opt. Commun.

F. J. Duarte, Opt. Commun. 117, 480 (1995).
[CrossRef]

Opt. Quantum Electron.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, Opt. Quantum Electron. 29, 461 (1997).
[CrossRef]

Proc. SPIE

B. Dunn, J. D. Mckenzie, J. I. Zink, O. M. Stafsudd, Proc. SPIE 1328, 174 (1990).
[CrossRef]

Pure Appl. Opt.

S. Popov, Pure Appl. Opt. 7, 1379 (1998).
[CrossRef]

Other

F. J. Duarte, R. O. James, and L. A. Rowley, “Dye-doped polymer nanometer gain medium for use in a laser,” U.S. patent application (December 22, 2002).

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, and J. C. McDonald, in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

A. Costela, I. Garcia-Moreno, and R. Sastre, in Handbook of Advanced Electronic and Photonic Material: Liquid Crystals, Display and Laser Materials, H. S. Nalwa, ed. (Academic, New York, 2001), pp. 161–208.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Beam profile following propagation of a TEM00 beam through a laser dye-doped, silica–polymer composite consistent with previous reports.9,10 (b) Beam profile following propagation of a TEM00 beam through a laser DDP homogeneous gain medium capable of yielding tunable SLM emission.3,4 In both cases the beam is generated from a He–Ne laser λ632.8 nm emitting a TEM00 beam.

Fig. 2
Fig. 2

Beam profile following propagation of a TEM00 beam through a laser DDPN gain medium. As explained in the text, the TEM00 characteristics are conserved.

Fig. 3
Fig. 3

Laser emission beam profile obtained with the DDPN gain medium at 30% w/w SiO2 by use of a simple mirror–grating cavity.

Tables (2)

Tables Icon

Table 1 Performance of Solid-State Lasers Incorporating DDP and DDPN Gain Matrices

Tables Icon

Table 2 n/T in DDP and DDPN Matrices

Metrics