Abstract

We demonstrate high-speed (250 Mbps) data encryption over 25 km of telecommunication fiber by use of coherent states. For the parameter values used in the experiment, the demonstration is secure against individual ciphertext-only eavesdropping attacks near the transmitter with ideal detection equipment. Whereas other quantum-cryptographic schemes require the use of fragile quantum states and ultrasensitive detection equipment, our protocol is loss tolerant, uses off-the-shelf components, and is optically amplifiable.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Daemen and V. Rijmen, in Smart Card Research and Applications, LNCS 1820, J. J. Quisquater B. Schneier, eds. (Springer-Verlag, Berlin, 2000), pp. 288–296.
  2. B. Schneier, Applied Cryptography, 2nd ed. (Wiley, New York, 1996), Chaps. 12–17.
  3. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1984), pp. 175–179.
  4. G. S. Vernam, J. Am. Inst. Electr. Eng. 45, 109 (1926).
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
    [CrossRef]
  6. E. S. Selmer, Linear Recurrence over Finite Field (Univ. Bergen Press, Bergen, Norway, 1966).
  7. N. Zierler and J. Brillhart, Inf. Control 15, 541 (1968).
    [CrossRef]
  8. G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.
  9. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, Phys. Rev. Lett. 90, 227901 (2003).
    [CrossRef]

2003 (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, Phys. Rev. Lett. 90, 227901 (2003).
[CrossRef]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

1968 (1)

N. Zierler and J. Brillhart, Inf. Control 15, 541 (1968).
[CrossRef]

1926 (1)

G. S. Vernam, J. Am. Inst. Electr. Eng. 45, 109 (1926).

Barbosa, G. A.

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, Phys. Rev. Lett. 90, 227901 (2003).
[CrossRef]

G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.

Bennett, C. H.

C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1984), pp. 175–179.

Brassard, G.

C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1984), pp. 175–179.

Brillhart, J.

N. Zierler and J. Brillhart, Inf. Control 15, 541 (1968).
[CrossRef]

Corndorf, E.

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, Phys. Rev. Lett. 90, 227901 (2003).
[CrossRef]

G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.

Daemen, J.

J. Daemen and V. Rijmen, in Smart Card Research and Applications, LNCS 1820, J. J. Quisquater B. Schneier, eds. (Springer-Verlag, Berlin, 2000), pp. 288–296.

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Kumar, P.

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, Phys. Rev. Lett. 90, 227901 (2003).
[CrossRef]

G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.

Mauro D'Ariano, G.

G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.

Paris, M. G. A.

G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.

Perinotti, P.

G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Rijmen, V.

J. Daemen and V. Rijmen, in Smart Card Research and Applications, LNCS 1820, J. J. Quisquater B. Schneier, eds. (Springer-Verlag, Berlin, 2000), pp. 288–296.

Schneier, B.

B. Schneier, Applied Cryptography, 2nd ed. (Wiley, New York, 1996), Chaps. 12–17.

Selmer, E. S.

E. S. Selmer, Linear Recurrence over Finite Field (Univ. Bergen Press, Bergen, Norway, 1966).

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Vernam, G. S.

G. S. Vernam, J. Am. Inst. Electr. Eng. 45, 109 (1926).

Yuen, H. P.

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, Phys. Rev. Lett. 90, 227901 (2003).
[CrossRef]

G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Zierler, N.

N. Zierler and J. Brillhart, Inf. Control 15, 541 (1968).
[CrossRef]

Inf. Control (1)

N. Zierler and J. Brillhart, Inf. Control 15, 541 (1968).
[CrossRef]

J. Am. Inst. Electr. Eng. (1)

G. S. Vernam, J. Am. Inst. Electr. Eng. 45, 109 (1926).

Phys. Rev. Lett. (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, Phys. Rev. Lett. 90, 227901 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Other (5)

E. S. Selmer, Linear Recurrence over Finite Field (Univ. Bergen Press, Bergen, Norway, 1966).

J. Daemen and V. Rijmen, in Smart Card Research and Applications, LNCS 1820, J. J. Quisquater B. Schneier, eds. (Springer-Verlag, Berlin, 2000), pp. 288–296.

B. Schneier, Applied Cryptography, 2nd ed. (Wiley, New York, 1996), Chaps. 12–17.

C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1984), pp. 175–179.

G. A. Barbosa, E. Corndorf, P. Kumar, H. P. Yuen, G. Mauro D’Ariano, M. G. A. Paris, and P. Perinotti, in Quantum Communication, Measurement and Computing (QCMO’02), J. H. Shapiro Q. Hirota, eds. (Rinton Press, Paramus, N.J., 2002), pp. 357–360.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Left, Numerical calculation of Eve’s P¯e versus signal power for M=2047. Inset: ρ1 and ρ0 represent density operators that correspond to logical 1 and 0, respectively. Right, M pairs of orthogonal polarization states uniformly span a great circle of the Poincaré sphere.

Fig. 2
Fig. 2

Experimental setup: PMs, phase modulators; FPBS, fiber-coupled polarization beam splitter; G1, RF power amplifier; G2, low-noise erbium-doped fiber amplifier; G3, RF signal amplifier.

Fig. 3
Fig. 3

5-kbit fragments of 9.1-Mbit bitmap transmissions at 250 Mbps over 25 km of fiber. Insets, the received bit-map images. Top, Bob’s detection; bottom, Eve’s detection. The apparent banding of Eve’s measurements is due to the sinusoidal intensity transfer function of polarization modulation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

|Ψma=|αx|α exp(iθmy,
|Ψmb=|αx|α expiθm+πy,
U=100exp-iθm.
|Ψma=|2ηαx|0y,
|Ψmb=|0x|-2ηαy,
|Ψma=|expiδθ/22ηα cosδθ/2x|i expiδθ/22ηα sinδθ/2y,
|Ψmb=|-i expiδθ/22ηα sinδθ/2x|-expiδθ/22ηα cosδθ/2y.

Metrics