Abstract

We study the properties of polarization evolution in sinusoidally spun fibers. It is found that, similar to linear birefringent fibers, the evolution of the state of polarization exhibits periodicity, which can be measured by distributed measurement, such as those made with a polarization optical time domain reflectometer. The spatial period is linked with the spin parameters and fiber beat length in a simple equation. In combination with a previous finding, it is shown that the spatial period is uniquely related to spun-fiber polarization mode dispersion. This suggests that distributed fiber polarization mode dispersion can be determined through the measurement of the spatial period obtained in a distributed measurement.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Li and D. A. Nolan, Opt. Lett. 23, 1659 (1998).
    [CrossRef]
  2. R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
    [CrossRef]
  3. X. Chen, M. J. Li, and D. A. Nolan, Opt. Lett. 27, 294 (2002).
    [CrossRef]
  4. X. Chen, M.-J. Li, and D. A. Nolan, Opt. Lett. 27, 1595 (2002).
    [CrossRef]
  5. A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
    [CrossRef]
  6. H. Sunnerud, B. Olsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 11, 860 (1999).
    [CrossRef]
  7. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, Opt. Lett. 25, 384 (2000).
    [CrossRef]
  8. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett. 10, 1458 (1998).
    [CrossRef]
  9. M. Wegmuller, M. Legr, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
    [CrossRef]
  10. J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 148, 176 (2001).
    [CrossRef]

2002

2001

J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 148, 176 (2001).
[CrossRef]

A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
[CrossRef]

2000

1999

H. Sunnerud, B. Olsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 11, 860 (1999).
[CrossRef]

1998

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett. 10, 1458 (1998).
[CrossRef]

M. J. Li and D. A. Nolan, Opt. Lett. 23, 1659 (1998).
[CrossRef]

R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
[CrossRef]

Andrekson, P. A.

H. Sunnerud, B. Olsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 11, 860 (1999).
[CrossRef]

Chen, X.

Ellison, J. G.

J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 148, 176 (2001).
[CrossRef]

Galtarossa, A.

A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, Opt. Lett. 25, 384 (2000).
[CrossRef]

Gisin, N.

M. Wegmuller, M. Legr, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett. 10, 1458 (1998).
[CrossRef]

Huttner, B.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett. 10, 1458 (1998).
[CrossRef]

Legr, M.

M. Wegmuller, M. Legr, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

Li, M. J.

Li, M.-J.

Nolan, D. A.

Olsson, B.

H. Sunnerud, B. Olsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 11, 860 (1999).
[CrossRef]

Palmieri, L.

A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, Opt. Lett. 25, 384 (2000).
[CrossRef]

Passy, R.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett. 10, 1458 (1998).
[CrossRef]

Pizzinat, A.

A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
[CrossRef]

Reecht, J.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett. 10, 1458 (1998).
[CrossRef]

Schiano, M.

Schuh, R. E.

R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
[CrossRef]

Shan, X.

R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
[CrossRef]

Siddiqui, A. S.

J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 148, 176 (2001).
[CrossRef]

R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
[CrossRef]

Sunnerud, H.

H. Sunnerud, B. Olsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 11, 860 (1999).
[CrossRef]

Tambosso, T.

von der Weid, J. P.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett. 10, 1458 (1998).
[CrossRef]

Wegmuller, M.

M. Wegmuller, M. Legr, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

IEE Proc. Optoelectron.

J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 148, 176 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Sunnerud, B. Olsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 11, 860 (1999).
[CrossRef]

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett. 10, 1458 (1998).
[CrossRef]

J. Lightwave Technol.

R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
[CrossRef]

A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
[CrossRef]

J. Lightwave Technol.

M. Wegmuller, M. Legr, and N. Gisin, J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized power as a function of fiber length. (a) Spin magnitude of 3.0 turns/m, spin period of 1.0 m, and beat length of 10 m. (b) Spin magnitude of 3.0 turns/m, spin period of 1.0 m, and beat length of 20 m. (c) No spinning, fiber beat length of 10.0 m.

Fig. 2
Fig. 2

Spatial period in normalized power as a function of the fiber beat length for two spin magnitudes at a fixed spin period of 1 m.

Fig. 3
Fig. 3

Spatial period and PMDRF as a function of the spin magnitude for a fixed spin period.

Fig. 4
Fig. 4

PMD as a function of the spatial period. Spin period of 1.0 m. Spin magnitude varies from 3.0 to 3.5 turns/m. Beat length is between 5 and 15 m.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dAx/dzdAy/dz=iδβ/2αz-αz-iδβ/2AxAy,
αz=α0 cosηz,
Jz=Axz-Ay*zAyzAx*z.
Ex,outEy,out=Pϕ2Mzcosϕ1sinϕ1,
Pϕ2=cos2ϕ2sinϕ2cosϕ2sinϕ2cosϕ2sin2ϕ2.
Pz=1/2cos2ϕ1-ϕ2+cos22θ-ϕ1-ϕ2+1/2cos2ϕ1-ϕ2-cos22θ-ϕ1-ϕ2×cos2πzLB/2.
PMD=J02α0/ηλ/cLB,
Period=LB/2/J02α0/η.
PMD=λ/2c1/Period.

Metrics