Abstract

By establishing a direct relation between the dispersion and the field profile of a coupled-resonator optical waveguide (CROW) and those of its constituent cavities, we present a systematic method for the design of a single-mode CROW and for control of its dispersion. The procedure includes the design of a single-mode cavity and control of its frequency by engineering its structure. Then, by chaining these cavities in the proper direction and at an appropriate distance, we achieve the desired dispersion for the CROW.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. M. D. Rahn, A. M. Fox, M. S. Skolnick, and T. F. Krauss, J. Opt. Soc. Am. B 19, 716 (2002).
    [CrossRef]
  4. N. Stefanou and A. Modinos, Phys. Rev. B 57, 12, 127 (1998).
    [CrossRef]
  5. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]
  6. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
    [CrossRef] [PubMed]
  7. A. Boag and B. Z. Steinberg, J. Opt. Soc. Am. A 18, 2799 (2001).
    [CrossRef]
  8. K. S. Yee, IEEE Trans. Antenna Propag. AP-14, 302 (1966).
  9. C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16, 635 (1995).
    [CrossRef]
  10. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  11. A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
    [CrossRef]

2002 (1)

2001 (2)

A. Boag and B. Z. Steinberg, J. Opt. Soc. Am. A 18, 2799 (2001).
[CrossRef]

A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
[CrossRef]

2000 (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

N. Stefanou and A. Modinos, Phys. Rev. B 57, 12, 127 (1998).
[CrossRef]

1995 (1)

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16, 635 (1995).
[CrossRef]

1994 (1)

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

1966 (1)

K. S. Yee, IEEE Trans. Antenna Propag. AP-14, 302 (1966).

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Boag, A.

Chan, C. T.

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16, 635 (1995).
[CrossRef]

de Maagt, P. J. L.

A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
[CrossRef]

Fox, A. M.

Ho, K. M.

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16, 635 (1995).
[CrossRef]

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Krauss, T. F.

M. D. Rahn, A. M. Fox, M. S. Skolnick, and T. F. Krauss, J. Opt. Soc. Am. B 19, 716 (2002).
[CrossRef]

A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
[CrossRef]

Lederer, F.

A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
[CrossRef]

Lee, R. K.

Modinos, A.

N. Stefanou and A. Modinos, Phys. Rev. B 57, 12, 127 (1998).
[CrossRef]

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Peschel, U.

A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
[CrossRef]

Rahn, M. D.

Reynolds, A. L.

A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
[CrossRef]

Roberts, P. J.

A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
[CrossRef]

Scherer, A.

Skolnick, M. S.

Stefanou, N.

N. Stefanou and A. Modinos, Phys. Rev. B 57, 12, 127 (1998).
[CrossRef]

Steinberg, B. Z.

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yariv, A.

Yee, K. S.

K. S. Yee, IEEE Trans. Antenna Propag. AP-14, 302 (1966).

Yu, Q. L.

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16, 635 (1995).
[CrossRef]

IEEE Trans. Antenna Propag. (1)

K. S. Yee, IEEE Trans. Antenna Propag. AP-14, 302 (1966).

IEEE Trans. Microwave Theory Tech. (1)

A. L. Reynolds, U. Peschel, F. Lederer, and P. J. Roberts, T. F. Krauss, P. J. L. de Maagt, IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. B (2)

N. Stefanou and A. Modinos, Phys. Rev. B 57, 12, 127 (1998).
[CrossRef]

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16, 635 (1995).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) One unit cell and the field patterns of the even (left) and odd (right) TM modes of a CROW made by removal of one row of air holes in the ΓM direction of the two-dimensional triangular lattice photonic crystal of air holes in GaAs (=12.96). (b) Dispersion diagram of the CROW in the photonic bandgap (PBG). The radius of all air holes is r=0.3a. The direction of propagation is along the x axis, and the magnetic fields for both TM modes are in the z direction (normal to the plane of periodicity).

Fig. 2
Fig. 2

(a) Field profiles and (b) spectrum of the TM modes of a single cavity made by removal of one hole from the two-dimensional triangular lattice photonic crystal of air holes in GaAs. The radius of all air holes is r=0.3a. The cavity spectrum is defined as the variation of the electromagnetic field intensity inside the cavity versus frequency.

Fig. 3
Fig. 3

(a) Typical field profiles of the modified (non-degenerate) cavity and (b) variation of the resonance frequencies of the TM cavity modes with the radius of modified holes (Rd). The radius of all other holes is r=0.3a.

Fig. 4
Fig. 4

(a) One period of the modified CROW and dispersion diagrams of (b) the even and (c) the odd TM modes for different radii of the modified holes (Rd). The field pattern of the even mode at Rd=0.5a is shown in (a). The radius of all other holes is r=0.3a. The direction of propagation is along the x axis, and the magnetic fields for both TM modes are in the z direction (normal to the plane of periodicity).

Metrics