Abstract

We show theoretically that it is possible to trap light in a microresonator structure by use of four-wave mixing. The efficiency of the parametric process is substantially increased by the high group delay of light inside the structure. The energy that is trapped has a half-life of approximately 500 ps in the presence of both linear and nonlinear loss in the channel waveguides and resonators. We also demonstrate that the energy can be extracted from the cavity with a similar process.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, Opt. Lett. 25, 554 (2000).
    [CrossRef]
  2. J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
    [CrossRef]
  3. S. Pereira, J. E. Sipe, J. E. Heebner, and R. W. Boyd, Opt. Lett. 27, 536 (2002).
    [CrossRef]
  4. S. Pereira, P. Chak, and J. E. Sipe, J. Opt. Soc. Am. B 19, 1991 (2002).
  5. S. Pereira, P. Chak, and J. E. Sipe, Opt. Lett. 28, 444 (2003).
    [CrossRef] [PubMed]
  6. C. Martijn de Sterke, E. N. Tsoy, and J. E. Sipe, Opt. Lett. 27, 485 (2002).
    [CrossRef]
  7. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, Opt. Lett. 22, 1244 (1997).
    [CrossRef] [PubMed]
  8. A. Yariv, Electron. Lett. 36, 321 (2000).
    [CrossRef]
  9. D. R. Rowland and J. D. Love, IEE Proc. Optoelectron. 14, 177 (1993).
  10. M. A. Afromowitz, Solid State Commun. 15, 59 (1974).
    [CrossRef]
  11. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
    [CrossRef]
  12. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
    [CrossRef]
  13. V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho, Opt. Lett. 19, 1734 (2001).

2003 (1)

2002 (5)

C. Martijn de Sterke, E. N. Tsoy, and J. E. Sipe, Opt. Lett. 27, 485 (2002).
[CrossRef]

S. Pereira, J. E. Sipe, J. E. Heebner, and R. W. Boyd, Opt. Lett. 27, 536 (2002).
[CrossRef]

J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

S. Pereira, P. Chak, and J. E. Sipe, J. Opt. Soc. Am. B 19, 1991 (2002).

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

2001 (1)

V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho, Opt. Lett. 19, 1734 (2001).

2000 (2)

1997 (1)

1993 (1)

D. R. Rowland and J. D. Love, IEE Proc. Optoelectron. 14, 177 (1993).

1992 (1)

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

1974 (1)

M. A. Afromowitz, Solid State Commun. 15, 59 (1974).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho, Opt. Lett. 19, 1734 (2001).

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

Afromowitz, M. A.

M. A. Afromowitz, Solid State Commun. 15, 59 (1974).
[CrossRef]

Aitchison, J. S.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Boyd, R. W.

J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

S. Pereira, J. E. Sipe, J. E. Heebner, and R. W. Boyd, Opt. Lett. 27, 536 (2002).
[CrossRef]

Chak, P.

S. Pereira, P. Chak, and J. E. Sipe, Opt. Lett. 28, 444 (2003).
[CrossRef] [PubMed]

S. Pereira, P. Chak, and J. E. Sipe, J. Opt. Soc. Am. B 19, 1991 (2002).

Cho, P. S.

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Gover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Hagness, S. C.

Heebner, J. E.

S. Pereira, J. E. Sipe, J. E. Heebner, and R. W. Boyd, Opt. Lett. 27, 536 (2002).
[CrossRef]

J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

Ho, P. T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho, Opt. Lett. 19, 1734 (2001).

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, Opt. Lett. 25, 554 (2000).
[CrossRef]

Ho, S. T.

Hryniewicz, J. V.

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Ironside, C. N.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Joneckis, L. G.

Little, B. E.

Love, J. D.

D. R. Rowland and J. D. Love, IEE Proc. Optoelectron. 14, 177 (1993).

Martijn de Sterke, C.

Park, Q.-H.

J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

Pereira, S.

Rafizadeh, D.

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Rowland, D. R.

D. R. Rowland and J. D. Love, IEE Proc. Optoelectron. 14, 177 (1993).

Sipe, J. E.

Stair, K. A.

Stegeman, G. I.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Taflove, A.

Tiberio, R. C.

Tsoy, E. N.

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho, Opt. Lett. 19, 1734 (2001).

Villeneuve, A.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Wigley, P. G. J.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Wilson, R. A.

Yang, C. C.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Yariv, A.

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

Zhang, J. P.

Appl. Phys. Lett. (1)

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Electron. Lett. (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

IEE Proc. Optoelectron. (1)

D. R. Rowland and J. D. Love, IEE Proc. Optoelectron. 14, 177 (1993).

IEEE Photon. Technol. Lett. (1)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Gover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

S. Pereira, P. Chak, and J. E. Sipe, J. Opt. Soc. Am. B 19, 1991 (2002).

Opt. Lett. (1)

V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho, Opt. Lett. 19, 1734 (2001).

Opt. Lett. (5)

Solid State Commun. (1)

M. A. Afromowitz, Solid State Commun. 15, 59 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the system. All pulses are injected along the bottom channel. (b) Transmission spectrum (solid curve) of the structure, the dips correspond to resonances of the outer resonators. The dotted lines correspond to resonances of the inner resonators.

Fig. 2
Fig. 2

Energy trapped in the structure as a function of time for linear loss of 0 (solid curve), 0.7 (dotted curve), and 2 dB/cm (dashed–dotted curve).

Fig. 3
Fig. 3

Energy in the structure (dotted curve) and output signal intensity (solid curve) for the numerical simulation of flushing described in the text. The energy is flushed out at 200 ps. Inset, frequency spectrum of the flushed signal light as a function of δω, the detuning from the initial signal frequency. The shaded region shows the frequency range over which the outer resonators are 90% reflecting.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E3E2=σiκiκσE4E1,
ζ+1vgtAq=iγqKq-12LqAq,
z+1vgtAsz,t=iγsAfz,t2Asz,t.

Metrics