Abstract

We present two-photon fluorescence near-field microscopy based on an evanescent field focus produced by a ring beam under total internal reflection. The evanescent field produced by this method is focused by a high-numerical-aperture objective, producing a tightly confined volume that can effectively induce two-photon excitation. The imaging system is characterized by the two-photon-excited images of the nanocrystals, which show that the focused evanescent field is split into two lobes because of the enhancement of the longitudinal polarization component at the focus. This feature is confirmed by the theoretical prediction. Unlike other two-photon near-field probes, this method does not have the heating effect and requires no control mechanism of the distance between a sample and the probe.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. M. K. Lewis, P. Wolanin, A. Gafni, and D. G. Steel, Opt. Lett. 23, 1111 (1998).
    [CrossRef]
  3. S. W. Hell, M. Booth, S. Wilms, C. M. Schnetter, A. K. Kirsch, D. J. Arndt-Jovin, and T. M. Jovin, Opt. Lett. 23, 1238 (1998).
    [CrossRef]
  4. D. Jakubczyk, Y. Shen, M. Lal, C. Friend, K. S. Kim, J. Swiatkiewicz, and P. N. Prasad, Opt. Lett. 24, 1151 (1999).
    [CrossRef]
  5. E. J. Sanchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
    [CrossRef]
  6. J. W. M. Chon, X. Gan, and M. Gu, presented at Multi-dimensional Microscopy 2001, Melbourne, Australia, November 25–28, 2001.
  7. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
    [CrossRef]
  8. J. W. M. Chon, X. Gan, and M. Gu, Appl. Phys. Lett. 81, 1576 (2002).
    [CrossRef]
  9. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
    [CrossRef]
  10. A. L. Efros, Phys. Rev. B 46, 7448 (1992).
    [CrossRef]
  11. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
    [CrossRef]
  12. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, Berlin, 1999).

2002 (1)

J. W. M. Chon, X. Gan, and M. Gu, Appl. Phys. Lett. 81, 1576 (2002).
[CrossRef]

1999 (2)

1998 (2)

1996 (2)

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
[CrossRef]

1993 (1)

C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
[CrossRef]

1992 (1)

A. L. Efros, Phys. Rev. B 46, 7448 (1992).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Arndt-Jovin, D. J.

Bawendi, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
[CrossRef]

Bawendi, M. G.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
[CrossRef]

Booth, M.

Brus, L. E.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

Chon, J. W. M.

J. W. M. Chon, X. Gan, and M. Gu, Appl. Phys. Lett. 81, 1576 (2002).
[CrossRef]

J. W. M. Chon, X. Gan, and M. Gu, presented at Multi-dimensional Microscopy 2001, Melbourne, Australia, November 25–28, 2001.

Dabbousi, B. O.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Efros, A. L.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
[CrossRef]

A. L. Efros, Phys. Rev. B 46, 7448 (1992).
[CrossRef]

Friend, C.

Gafni, A.

Gan, X.

J. W. M. Chon, X. Gan, and M. Gu, Appl. Phys. Lett. 81, 1576 (2002).
[CrossRef]

J. W. M. Chon, X. Gan, and M. Gu, presented at Multi-dimensional Microscopy 2001, Melbourne, Australia, November 25–28, 2001.

Gu, M.

J. W. M. Chon, X. Gan, and M. Gu, Appl. Phys. Lett. 81, 1576 (2002).
[CrossRef]

J. W. M. Chon, X. Gan, and M. Gu, presented at Multi-dimensional Microscopy 2001, Melbourne, Australia, November 25–28, 2001.

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, Berlin, 1999).

Harris, T. D.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

Hell, S. W.

Jakubczyk, D.

Jovin, T. M.

Kim, K. S.

Kirsch, A. K.

Kuno, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
[CrossRef]

Lal, M.

Lewis, M. K.

Mackling, J. J.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

Murray, C. B.

C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
[CrossRef]

Nirmal, M.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
[CrossRef]

Norris, D. J.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
[CrossRef]

C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
[CrossRef]

Novotny, L.

E. J. Sanchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

Prasad, P. N.

Rosen, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
[CrossRef]

Sanchez, E. J.

E. J. Sanchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

Schnetter, C. M.

Shen, Y.

Steel, D. G.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Swiatkiewicz, J.

Trautman, J. K.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Wilms, S.

Wolanin, P.

Xie, X. S.

E. J. Sanchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

J. W. M. Chon, X. Gan, and M. Gu, Appl. Phys. Lett. 81, 1576 (2002).
[CrossRef]

J. Am. Chem. Soc. (1)

C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
[CrossRef]

Nature (1)

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mackling, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
[CrossRef]

Phys. Rev. B (1)

A. L. Efros, Phys. Rev. B 46, 7448 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

E. J. Sanchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (2)

J. W. M. Chon, X. Gan, and M. Gu, presented at Multi-dimensional Microscopy 2001, Melbourne, Australia, November 25–28, 2001.

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, Berlin, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: QWP, quarter-wave plate; GTP, Glan–Thompson polarizer; OD, obstruction disk; SS, scanning stage; DB, dichroic beam splitter; NC, nanocrystals; OL, objective lens (numerical aperture of 1.65); Ti:Sa, Ti:sapphire laser; L1L3, lenses; PMT, photomultiplier tube; PH, pinhole; PC, personal computer.

Fig. 2
Fig. 2

(a) Dependence of the two-photon fluorescence intensity on the evanescent intensity. (b)–(e) Direction of the focus splitting with respect to the incident polarization (1.4 µm×1.4 µm) under an illumination of 0.2 MW/cm2. The arrows indicate the direction of the incident polarization.

Fig. 3
Fig. 3

Normalized two-photon theoretical fluorescence profile and contributions from individual field components along the direction of the incident polarization. Inset, plot of the peak intensity ratio Ez2/Ex2 as a function of the normalized obstruction radius at the interface between the coverslip glass (n=1.78) and air (numerical aperture of 1.65).

Fig. 4
Fig. 4

Comparison between theory (solid curve) and an experimental split-focus profile (squares) along the incident polarization direction and mapping of the excitation field components. The experimental data was averaged five times. Insets (a) and (b), close-up views of theoretical and experimental images (600 nm×600 nm), respectively.

Metrics