Abstract

We demonstrate inhibition of the sidelobes of the axial point spread function in optical coherence tomography by shaping the power spectrum of the light source with a remaining power of 4.54 mW. A broadband amplified spontaneous emission source radiating at 1565±40 nm is employed in a free-space optical coherence tomography system. The axial point spread functions before and after optical spectral shaping are presented. Results show that spectral shaping of the source can inhibit sidelobes of the point spread function up to 12.9 dB, with an associated small increase of 2.2 dB in noise floor in the far field. The effect of spectral shaping on axial resolution is demonstrated according to three metrics. Image quality improvement is also illustrated with optical coherence tomography images of an onion before and after spectral shaping.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  2. J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
    [CrossRef]
  3. C. Akcay, P. Parrein, and J. P. Rolland, Appl. Opt. 41, 5256 (2002).
    [CrossRef] [PubMed]
  4. B. E. Bouma and G. J. Tearney, in Handbook of Optical Coherence Tomography, B. E. Bouma G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 67–97.
  5. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), p. 179.
  6. E. Sorokin, G. Tempea, and T. Brabec, J. Opt. Soc. Am. B 17, 146 (2000).
    [CrossRef]
  7. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, Opt. Lett. 27, 406 (2002).
    [CrossRef]
  8. Y. Zhang, M. Sato, and N. Tanno, Opt. Lett. 26, 205 (2001).
    [CrossRef]
  9. D. G. Crowe, J. Shamir, and T. W. Ryan, Appl. Opt. 32, 179 (1993).
    [CrossRef] [PubMed]
  10. M. Bashkansky, M. D. Duncan, and J. Reintjes, Appl. Opt. 37, 8137 (1998).
  11. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 73–76.
  12. W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

2003 (1)

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

2002 (2)

2001 (1)

2000 (1)

1999 (1)

J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
[CrossRef]

1998 (1)

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Akcay, C.

Bashkansky, M.

Bouma, B. E.

B. E. Bouma and G. J. Tearney, in Handbook of Optical Coherence Tomography, B. E. Bouma G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 67–97.

Brabec, T.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Crowe, D. G.

de Boer, J. F.

Duncan, M. D.

Duncan, W.

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Endsley, L.

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 73–76.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Lee, B.

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), p. 179.

Nassif, N.

Nelson, J. S.

Park, B. H.

Parrein, P.

Powell, D.

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Rancuret, P.

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Reintjes, J.

Rolland, J. P.

Ryan, T. W.

Sato, M.

Sawyers, B.

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Schmitt, J. M.

J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Shamir, J.

Sorokin, E.

Stalcup, W.

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Tanno, N.

Tearney, G. J.

B. E. Bouma and G. J. Tearney, in Handbook of Optical Coherence Tomography, B. E. Bouma G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 67–97.

Tempea, G.

Tripathi, R.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), p. 179.

Zhang, Y.

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Proc. SPIE (1)

W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Other (3)

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 73–76.

B. E. Bouma and G. J. Tearney, in Handbook of Optical Coherence Tomography, B. E. Bouma G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 67–97.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), p. 179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup used for axial PSF measurements: C, collimator; BSs, beam splitters; M1, M2, mirrors.

Fig. 2
Fig. 2

Power spectra. Solid curve, original power spectrum of the source; dashed curve, power spectrum after the first shaping operation; dotted curve, power spectrum after the second shaping operation.

Fig. 3
Fig. 3

Axial PSFs: solid curve, original source power spectrum; dashed curve, power spectrum presented by the dashed curve in Fig. 2.

Fig. 4
Fig. 4

Images of onion (top) before and (bottom) after spectral shaping. The image sizes are 1 mm×1 mm.

Tables (1)

Tables Icon

Table 1 Axial Resolution of the Differently Shaped Power Spectra Computed According to the Three Metrics Illustrated in Fig. 2

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IΔzReERtES*t-2Δzcdt,
PSFΔzSλexpi2πλ¯2λ-λ¯2Δzdλ,

Metrics