Abstract

Multiphoton multifocal microscopy (MMM) usually has been achieved through a combination of galvo scanners with microlens arrays, with rotating disks of microlens arrays, and cascaded beam splitters with asynchronous rastering of scanning mirrors. Here we describe the achievement of a neat and compact MMM by use of a high-diffraction-efficiency diffractive-optic element that generates a multiple-spot grid of uniform intensity to achieve higher fidelity in imaging of live cells at adequate speeds.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, J. Microsc. 192, 217 (1998).
    [CrossRef]
  3. J. Bewersdorf, R. Pick, and S. W. Hell, Opt. Lett. 123, 655 (1998).
    [CrossRef]
  4. J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2292 (2002).
    [CrossRef] [PubMed]
  5. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Lowe, Biophys. J. 77, 3341 (1999).
    [CrossRef] [PubMed]
  6. T. Takamatsu, O. Nakamura, and S. Kawata, Opt. Lett. 27, 1324 (2002).
    [CrossRef]
  7. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, Opt. Express 7, 273 (2000), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  8. A. W. Lohmann and D. P. Paris, Appl. Opt. 6, 1739 (1967).
    [CrossRef] [PubMed]
  9. M. R. Taghizadeh, J. M. Miller, P. Blair, and F. A. P. Tooley, IEEE Micro 14(6), 10 (1994).
    [CrossRef]
  10. M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
    [CrossRef]

2002 (2)

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2292 (2002).
[CrossRef] [PubMed]

T. Takamatsu, O. Nakamura, and S. Kawata, Opt. Lett. 27, 1324 (2002).
[CrossRef]

2000 (1)

1999 (1)

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Lowe, Biophys. J. 77, 3341 (1999).
[CrossRef] [PubMed]

1998 (2)

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

J. Bewersdorf, R. Pick, and S. W. Hell, Opt. Lett. 123, 655 (1998).
[CrossRef]

1997 (1)

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
[CrossRef]

1994 (1)

M. R. Taghizadeh, J. M. Miller, P. Blair, and F. A. P. Tooley, IEEE Micro 14(6), 10 (1994).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1967 (1)

Barton, I. M.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
[CrossRef]

Bewersdorf, J.

J. Bewersdorf, R. Pick, and S. W. Hell, Opt. Lett. 123, 655 (1998).
[CrossRef]

Blair, P.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
[CrossRef]

M. R. Taghizadeh, J. M. Miller, P. Blair, and F. A. P. Tooley, IEEE Micro 14(6), 10 (1994).
[CrossRef]

Brakenhoff, G. J.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Buist, A. H.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Campagnola, P. J.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Lowe, Biophys. J. 77, 3341 (1999).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Fittinghoff, D. N.

Hell, S. W.

J. Bewersdorf, R. Pick, and S. W. Hell, Opt. Lett. 123, 655 (1998).
[CrossRef]

Kawata, S.

Layet, B.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
[CrossRef]

Lechleiter, J. D.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2292 (2002).
[CrossRef] [PubMed]

Lewis, A.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Lowe, Biophys. J. 77, 3341 (1999).
[CrossRef] [PubMed]

Lin, D. T.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2292 (2002).
[CrossRef] [PubMed]

Lohmann, A. W.

Lowe, L. M.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Lowe, Biophys. J. 77, 3341 (1999).
[CrossRef] [PubMed]

Miller, J. M.

M. R. Taghizadeh, J. M. Miller, P. Blair, and F. A. P. Tooley, IEEE Micro 14(6), 10 (1994).
[CrossRef]

Muller, M.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Nakamura, O.

Paris, D. P.

Pick, R.

J. Bewersdorf, R. Pick, and S. W. Hell, Opt. Lett. 123, 655 (1998).
[CrossRef]

Ross, N.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
[CrossRef]

Sieneart, I.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2292 (2002).
[CrossRef] [PubMed]

Squier, J.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Squier, J. A.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Taghizadeh, M. R.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
[CrossRef]

M. R. Taghizadeh, J. M. Miller, P. Blair, and F. A. P. Tooley, IEEE Micro 14(6), 10 (1994).
[CrossRef]

Takamatsu, T.

Tooley, F. A. P.

M. R. Taghizadeh, J. M. Miller, P. Blair, and F. A. P. Tooley, IEEE Micro 14(6), 10 (1994).
[CrossRef]

Waddie, A. J.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Wei, M. D.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Lowe, Biophys. J. 77, 3341 (1999).
[CrossRef] [PubMed]

Wiseman, P. W.

Appl. Opt. (1)

Biophys. J. (2)

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2292 (2002).
[CrossRef] [PubMed]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Lowe, Biophys. J. 77, 3341 (1999).
[CrossRef] [PubMed]

IEEE Micro (1)

M. R. Taghizadeh, J. M. Miller, P. Blair, and F. A. P. Tooley, IEEE Micro 14(6), 10 (1994).
[CrossRef]

J. Microsc. (1)

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Microelectron. Eng. (1)

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, Microelectron. Eng. 34, 219 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

T. Takamatsu, O. Nakamura, and S. Kawata, Opt. Lett. 27, 1324 (2002).
[CrossRef]

J. Bewersdorf, R. Pick, and S. W. Hell, Opt. Lett. 123, 655 (1998).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(A) One period of the 4×4 fan-out DOE. (B) Theoretical diffraction orders from the DOE: darker circles, desired orders; lighter circles, unwanted orders; +, zero-order beams. (C) Theoretical spatial spread of a 100-fs pulse diffracted by a DOE (3,3 order). (D) Three-dimensional intensity plot of a fluorescence image obtained with a Rhodamine solution excited by a 4×4 multispot. Distance between successive foci, 25 µm; laser power for one focus, 1 mW.

Fig. 2
Fig. 2

Experimental MMM setup. L1, L2, telescopic lens pair (2× magnification) that pivots the grid on the first galvo scanner (GX). L3, L4, second telescopic lens pair that pivots the grid on the second galvo scanner (GY). L5 and tube lens TL, telescopic lens pair (4× magnification) that pivots the grid on the back focal plane of the objective. DM, BF, dichroic mirror and blocking filter, respectively.

Fig. 3
Fig. 3

Z-sectioned images of the cytoskeleton of a bovine pulmonary artery endothelial cell at 500-nm axial distance. The resolution of each image is 512×512 pixels, the size of an image is 100 µm×100 µm, and the acquisition time of one image is 100 ms. The laser power for each focus is 1 mW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δsf=ΔλTm2+n2,

Metrics