Abstract

A three-dimensional tungsten photonic crystal is thermally excited and shown to emit light at a narrow band, λ=3.34.25 µm. The emission is experimentally observed to exceed that of the free-space Planck radiation over a wide temperature range, T=475850 K. It is proposed that an enhanced density of state associated with the propagating electromagnetic Bloch waves in the photonic crystal is responsible for this experimental finding.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, Nature 417, 52 (2002).
    [CrossRef] [PubMed]
  2. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
    [CrossRef]
  3. S. Y. Lin and J. G. Fleming, Proc. SPIE 5000, 1 (2003).
    [CrossRef]
  4. T. J. Coutts and M. C. Fitzgerald, Sci. Am. 279, 90 (1998).
    [CrossRef]
  5. A. Yariv, Quantum Electronics (Wiley, New York, 1989), Chap. 5, pp. 98–100.
  6. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems, Series in Pure and Applied Optics (Wiley, New York, 1996), Chap. 2.
  7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
    [CrossRef]
  8. E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
    [CrossRef]
  9. Z. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, J. Appl. Phys. 93, 38 (2003).
    [CrossRef]
  10. K. Sakoda, Opt. Exp. 4, 167 (1999), http://www.opticsexpress.org.
    [CrossRef]
  11. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
    [CrossRef]
  12. J. G. Fleming and S. Y. Lin, Opt. Lett. 24, 49 (1999).
    [CrossRef]
  13. J. L. Pan, H. K. H. Choy, and C. G. Fonstad, Jr., IEEE Trans. Electron. Devices 47, 241 (2000).
    [CrossRef]
  14. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984), Sect. 80.

2003 (3)

S. Y. Lin and J. G. Fleming, Proc. SPIE 5000, 1 (2003).
[CrossRef]

Z. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, J. Appl. Phys. 93, 38 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
[CrossRef]

2002 (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, Nature 417, 52 (2002).
[CrossRef] [PubMed]

2000 (2)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
[CrossRef]

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, Jr., IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

1999 (2)

J. G. Fleming and S. Y. Lin, Opt. Lett. 24, 49 (1999).
[CrossRef]

K. Sakoda, Opt. Exp. 4, 167 (1999), http://www.opticsexpress.org.
[CrossRef]

1998 (2)

T. J. Coutts and M. C. Fitzgerald, Sci. Am. 279, 90 (1998).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

1996 (1)

E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, Nature 417, 52 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

Boreman, G. D.

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems, Series in Pure and Applied Optics (Wiley, New York, 1996), Chap. 2.

Bur, J.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
[CrossRef]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
[CrossRef]

Choy, H. K. H.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, Jr., IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

Coutts, T. J.

T. J. Coutts and M. C. Fitzgerald, Sci. Am. 279, 90 (1998).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems, Series in Pure and Applied Optics (Wiley, New York, 1996), Chap. 2.

El-Kady, I.

Z. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, J. Appl. Phys. 93, 38 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, Nature 417, 52 (2002).
[CrossRef] [PubMed]

Fitzgerald, M. C.

T. J. Coutts and M. C. Fitzgerald, Sci. Am. 279, 90 (1998).
[CrossRef]

Fleming, J. G.

S. Y. Lin and J. G. Fleming, Proc. SPIE 5000, 1 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
[CrossRef]

Z. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, J. Appl. Phys. 93, 38 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, Nature 417, 52 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
[CrossRef]

J. G. Fleming and S. Y. Lin, Opt. Lett. 24, 49 (1999).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

Fonstad, Jr., C. G.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, Jr., IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

Ho, K. M.

Z. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, J. Appl. Phys. 93, 38 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, Nature 417, 52 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984), Sect. 80.

Li, Z.

Z. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, J. Appl. Phys. 93, 38 (2003).
[CrossRef]

Li, Z. Y.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984), Sect. 80.

Lin, S. Y.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
[CrossRef]

Z. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, J. Appl. Phys. 93, 38 (2003).
[CrossRef]

S. Y. Lin and J. G. Fleming, Proc. SPIE 5000, 1 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, Nature 417, 52 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
[CrossRef]

J. G. Fleming and S. Y. Lin, Opt. Lett. 24, 49 (1999).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

Ozbay, E.

E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
[CrossRef]

Pan, J. L.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, Jr., IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

Sakoda, K.

K. Sakoda, Opt. Exp. 4, 167 (1999), http://www.opticsexpress.org.
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

Soukoulos, C. M.

E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
[CrossRef]

Temelkuran, B.

E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
[CrossRef]

Tuttle, G.

E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1989), Chap. 5, pp. 98–100.

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

E. Ozbay, B. Temelkuran, M. M. Sigalas, G. Tuttle, C. M. Soukoulos, and K. M. Ho, Appl. Phys. Lett. 69, 3797 (1996).
[CrossRef]

IEEE Trans. Electron. Devices (1)

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, Jr., IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003).
[CrossRef]

J. Appl. Phys. (1)

Z. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, J. Appl. Phys. 93, 38 (2003).
[CrossRef]

Nature (2)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 252 (1998).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, Nature 417, 52 (2002).
[CrossRef] [PubMed]

Opt. Exp. (1)

K. Sakoda, Opt. Exp. 4, 167 (1999), http://www.opticsexpress.org.
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
[CrossRef]

Proc. SPIE (1)

S. Y. Lin and J. G. Fleming, Proc. SPIE 5000, 1 (2003).
[CrossRef]

Sci. Am. (1)

T. J. Coutts and M. C. Fitzgerald, Sci. Am. 279, 90 (1998).
[CrossRef]

Series in Pure and Applied Optics (1)

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems, Series in Pure and Applied Optics (Wiley, New York, 1996), Chap. 2.

Other (2)

A. Yariv, Quantum Electronics (Wiley, New York, 1989), Chap. 5, pp. 98–100.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984), Sect. 80.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Measured reflection (black curve) and transmission (red curve) spectra for an eight-layer tungsten photonic-crystal sample. The reflectance is high for λ5 µm (the PBG) and decreases sharply at λ4.5 µm (the photonic band edge). The transmittance is low 0.5% in the bandgap and exhibits narrow peaks at λ13.3,3.8,4.25 µm (red arrows). The peaks are due to light propagation through the first and second allowed modes of the photonic crystal. (b) Computed absorption spectrum for the same photonic-crystal sample. The absorptance also exhibits three peaks at λ3.3,3.8,4.1 µm. Inset, scanning electron microscope side view image of the tungsten photonic-crystal sample.

Fig. 2
Fig. 2

Measured thermal emission spectra taken at different T values. The emission is strongly suppressed for λ10 µm. Meanwhile, it exhibits three sharp peaks in the absorption–transmission bands λ=3.3,3.8,4.25 µm (arrows).

Fig. 3
Fig. 3

(a) Comparison of emission power density between the 3D PBG sample and a blackbody cavity radiator at T=750 K. The PBG emission exhibits a narrow FWHM of Δλ1.8 µm. For λ=3.34.25 µm, the PBG emission is experimentally observed to exceed that computed for a blackbody. The experimental uncertainty in power and temperature values is less than 5%. (b) Ratio of the PBG density of states, DPBGω, to the free-space density of states, D0ω. The radiation transfer efficiency from the heated PBG sample to free space is denoted αPBG. The dashed line indicates the free-space density-of-state value.

Fig. 4
Fig. 4

Semilog plot of the emission power density versus 1/T for both the PBG sample and a blackbody (BB). At λ=8 µm, the PBG emission intensity is strongly reduced yet exhibits a slope similar to that of the blackbody. At λ=3.3 µm, the PBG emission intensity is enhanced and the slope also agrees with that predicted for a blackbody, 14,400/3.3 µm4364 K.

Metrics