Abstract

A detailed analysis of adiabatic coupling between conventional photonic crystal single-line-defect and coupled-resonator optical waveguides is reported. Adiabatic coupling by progressive variation of the radii of the spacing defects between cavities is investigated. Flat transmission spectra with coupling efficiencies greater than 90% are achieved in a broad frequency range with short coupling lengths. Moreover, we find that flat transmission at low frequencies requires longer coupling lengths partly because the requirements imposed for adiabatic transmission in photonic crystals are violated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  2. P. Sanchis, J. Martí, J. Blasco, A. Martínez, and A. García, Opt. Express 10, 1391 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  3. A. Talneau, Ph. Lalanne, M. Agio, and C. M. Soukoulis, Opt. Lett. 27, 1522 (2002).
    [CrossRef]
  4. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]
  5. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. B 61, R11855 (2000).
    [CrossRef]
  6. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, Opt. Lett. 26, 1019 (2001).
    [CrossRef]
  7. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
    [CrossRef] [PubMed]
  8. Y. Xu, R. Lee, and A. Yariv, Opt. Lett. 27, 755 (2000).
    [CrossRef]
  9. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
    [CrossRef]
  10. S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, J. Appl. Phys. 90, 4321 (2001).
    [CrossRef]
  11. S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
    [CrossRef]
  12. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  13. The FDTD simulations were carried out with FullWAVE commercial software by RSoft Design Group.

2002 (4)

P. Sanchis, J. Martí, J. Blasco, A. Martínez, and A. García, Opt. Express 10, 1391 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

A. Talneau, Ph. Lalanne, M. Agio, and C. M. Soukoulis, Opt. Lett. 27, 1522 (2002).
[CrossRef]

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
[CrossRef]

2001 (3)

2000 (3)

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Y. Xu, R. Lee, and A. Yariv, Opt. Lett. 27, 755 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. B 61, R11855 (2000).
[CrossRef]

1999 (1)

Agio, M.

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. B 61, R11855 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Benisty, H.

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Blasco, J.

Brown, D. H.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

García, A.

Houdré, R.

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Ishikawa, H.

S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, J. Appl. Phys. 90, 4321 (2001).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Johnson, S. G.

S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Karle, T. J.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Krauss, T.

Krauss, T. E.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Lalanne, Ph.

Lan, S.

S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, J. Appl. Phys. 90, 4321 (2001).
[CrossRef]

Lee, R.

Y. Xu, R. Lee, and A. Yariv, Opt. Lett. 27, 755 (2000).
[CrossRef]

Lee, R. K.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Martí, J.

Martínez, A.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Nishikawa, S.

S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, J. Appl. Phys. 90, 4321 (2001).
[CrossRef]

Oesterlé, U.

Olivier, S.

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. B 61, R11855 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Rattier, M.

Sanchis, P.

Scherer, A.

Skrorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Smith, C.

Soukoulis, C. M.

Steer, M.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Talneau, A.

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. B 61, R11855 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Wada, O.

S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, J. Appl. Phys. 90, 4321 (2001).
[CrossRef]

Weisbuch, C.

Wilson, R.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Xu, Y.

Yariv, A.

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, J. Appl. Phys. 90, 4321 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. B 61, R11855 (2000).
[CrossRef]

Phys. Rev. E (1)

S. G. Johnson, P. Bienstman, M. A. Skrorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

The FDTD simulations were carried out with FullWAVE commercial software by RSoft Design Group.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the analyzed structure. (b) Dispersion diagrams for the SLWG and CROWs with r=0.25R, r=0.5R, r=0.75R, and r=R. The parameter r refers to the radius of the spacing rods between cavities, and R is the rod radius of the PhC.

Fig. 2
Fig. 2

Detailed view of the dispersion diagrams shown in Fig. 1(b).

Fig. 3
Fig. 3

(a) Transmission responses of the isolated cavities that form the CROWs with different rod radii as a function of the normalized frequency. Inset, isolated cavity considered. The transmission for r=R, r=0.75R, r=0.5R, and r=0.25R is given for the solid, dashed–dotted, dotted, and dashed curves, respectively. Electrical field distribution for r=0.5R at (b) the low-frequency and (c) the high-frequency resonant modes.

Fig. 4
Fig. 4

Transmission spectra as a function of the normalized frequency for the structure shown in Fig. 1(a) for several cases: (a) without taper, (b) L=3, (c) L=9, and (d) L=14. The parameter L refers to the number of intermediate rods, with a linear variation of their radius, used in the taper.

Metrics