Abstract

We present a numerical technique for reversing femtosecond pulse propagation in an optical fiber, such that given any output pulse it is possible to obtain the input pulse shape by numerically undoing all dispersion and nonlinear effects. The technique is tested against experimental results, and it is shown that it can be used for fiber output pulse optimization in both the anomalous and normal dispersion regimes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  2. A. Yariv, D. Fekete, and D. M. Pepper, Opt. Lett. 4, 52 (1979).
    [CrossRef]
  3. R. A. Fisher, B. R. Suydam, and D. Yevick, Opt. Lett. 8, 611 (1983).
    [CrossRef] [PubMed]
  4. R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
    [CrossRef] [PubMed]
  5. F. G. Omenetto, B. P. Luce, and A. J. Taylor, J. Opt. Soc. Am. B 16, 2005 (1999).
    [CrossRef]
  6. F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, Opt. Lett. 26, 938 (2001).
    [CrossRef]
  7. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  8. S. W. Clark, F. O. Ilday, and F. W. Wise, Opt. Lett. 26, 1320 (2001).
    [CrossRef]

2001

1999

F. G. Omenetto, B. P. Luce, and A. J. Taylor, J. Opt. Soc. Am. B 16, 2005 (1999).
[CrossRef]

1992

R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
[CrossRef] [PubMed]

1988

1983

1979

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Clark, S. W.

Fekete, D.

Fisher, R. A.

Heritage, J. P.

Ilday, F. O.

Judson, R. S.

R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
[CrossRef] [PubMed]

Kirschner, E. M.

Luce, B. P.

F. G. Omenetto, B. P. Luce, and A. J. Taylor, J. Opt. Soc. Am. B 16, 2005 (1999).
[CrossRef]

Moores, M. D.

Omenetto, F. G.

F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, Opt. Lett. 26, 938 (2001).
[CrossRef]

F. G. Omenetto, B. P. Luce, and A. J. Taylor, J. Opt. Soc. Am. B 16, 2005 (1999).
[CrossRef]

Pepper, D. M.

Rabitz, H.

R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
[CrossRef] [PubMed]

Reitze, D. H.

Suydam, B. R.

Taylor, A. J.

F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, Opt. Lett. 26, 938 (2001).
[CrossRef]

F. G. Omenetto, B. P. Luce, and A. J. Taylor, J. Opt. Soc. Am. B 16, 2005 (1999).
[CrossRef]

Weiner, A. M.

Wise, F. W.

Yariv, A.

Yevick, D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of OPC and reverse propagation.

Fig. 2
Fig. 2

Reverse propagation of an experimental output pulse. The experimental output pulse shape is plotted at z=0 m and numerically propagates in reverse from z=0 m to z=-10 m.

Fig. 3
Fig. 3

Comparison of the input obtained from reverse propagation and the actual experimental input.

Fig. 4
Fig. 4

Reverse propagation of a chirped sech pulse at λ0=1550 nm.

Fig. 5
Fig. 5

Amplitude and phase of the optimal input that produces the desired sech output pulse shape at λ0=800 nm.

Fig. 6
Fig. 6

Compared with the ideal output pulse shape produced by reverse propagation and pulse shaping, the OPC output is significantly distorted by high-order effects.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Az,Tz=Dˆ+NˆAz,TAz,T,
AL,T=expLDˆ+0LNˆAz,TdzA0,T,
A0,T=exp-LDˆ-0LNˆAz,TdzAL,T.
Az,Texp-hDˆexp-hNˆAz+h,TAz+h,T,
Dˆ=-α2-jβ222T2+β363T3.
Nˆ=jγA2+jω01ATA2A-TRA2T.

Metrics