Abstract

A new design for a single-photon tunneling device based on tunneling of light through a gap in a photonic crystal linear waveguide containing a deep defect state is suggested. Unlike recently observed single-photon tunneling through nanometer scale nonlinear pinholes in a thick gold film, in the device described here the photon current should be strictly conserved. By appropriate design of the barrier width, defect level position in the bandgap, and defect spatial position in the barrier, a desired photon tunneling rate can readily be engineered.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, Phys. Rev. Lett. 88, 187402 (2002).
    [CrossRef]
  2. I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Appl. Phys. Lett. 81, 3314.
  3. A. G. Malshukov, Phys. Rep. 194, 343 (1990).
    [CrossRef]
  4. T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
    [CrossRef]
  5. S. I. Bozhevolnyi and V. S. Volkov, Opt. Lett. 26, 734 (2001).
    [CrossRef]
  6. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, J. Lightwave Technology 19, 1924 (2001).
    [CrossRef]
  7. G. Kurizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
    [CrossRef] [PubMed]
  8. S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
    [CrossRef] [PubMed]
  9. A. M. Stoneham, Theory of Defects in Solids (Clarendon, Oxford, 1975).
  10. L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory (Pergamon, Oxford, 1977).
  11. F. Capasso, ed., Physics of Quantum Electron Devices (Springer-Verlag, Berlin, 1990).
    [CrossRef]

2002 (1)

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, Phys. Rev. Lett. 88, 187402 (2002).
[CrossRef]

2001 (2)

S. I. Bozhevolnyi and V. S. Volkov, Opt. Lett. 26, 734 (2001).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, J. Lightwave Technology 19, 1924 (2001).
[CrossRef]

1996 (1)

T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

1990 (2)

S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
[CrossRef] [PubMed]

A. G. Malshukov, Phys. Rep. 194, 343 (1990).
[CrossRef]

1988 (1)

G. Kurizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Brand, S.

T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, Phys. Rev. Lett. 88, 187402 (2002).
[CrossRef]

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Appl. Phys. Lett. 81, 3314.

DeLaRue, R. M.

T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

Fitt, A. D.

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, J. Lightwave Technology 19, 1924 (2001).
[CrossRef]

Furusawa, K.

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, J. Lightwave Technology 19, 1924 (2001).
[CrossRef]

Genack, A. Z.

G. Kurizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
[CrossRef] [PubMed]

Gungor, A.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, Phys. Rev. Lett. 88, 187402 (2002).
[CrossRef]

John, S.

S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
[CrossRef] [PubMed]

Krauss, T. F.

T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

Kurizki, G.

G. Kurizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
[CrossRef] [PubMed]

Landau, L. D.

L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory (Pergamon, Oxford, 1977).

Lifshits, E. M.

L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory (Pergamon, Oxford, 1977).

Malshukov, A. G.

A. G. Malshukov, Phys. Rep. 194, 343 (1990).
[CrossRef]

Monro, T. M.

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, J. Lightwave Technology 19, 1924 (2001).
[CrossRef]

Please, C. P.

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, J. Lightwave Technology 19, 1924 (2001).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, Phys. Rev. Lett. 88, 187402 (2002).
[CrossRef]

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Appl. Phys. Lett. 81, 3314.

Stoneham, A. M.

A. M. Stoneham, Theory of Defects in Solids (Clarendon, Oxford, 1975).

Volkov, V. S.

Wang, J.

S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
[CrossRef] [PubMed]

Zayats, A. V.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, Phys. Rev. Lett. 88, 187402 (2002).
[CrossRef]

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Appl. Phys. Lett. 81, 3314.

Appl. Phys. Lett. (1)

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Appl. Phys. Lett. 81, 3314.

J. Lightwave Technology (1)

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, J. Lightwave Technology 19, 1924 (2001).
[CrossRef]

Nature (1)

T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rep. (1)

A. G. Malshukov, Phys. Rep. 194, 343 (1990).
[CrossRef]

Phys. Rev. Lett. (3)

G. Kurizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
[CrossRef] [PubMed]

S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
[CrossRef] [PubMed]

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, Phys. Rev. Lett. 88, 187402 (2002).
[CrossRef]

Other (3)

A. M. Stoneham, Theory of Defects in Solids (Clarendon, Oxford, 1975).

L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory (Pergamon, Oxford, 1977).

F. Capasso, ed., Physics of Quantum Electron Devices (Springer-Verlag, Berlin, 1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Schematic of a photonic crystal with a point defect (atom), (b) zone diagram of a photonic crystal with a point defect.

Fig. 2
Fig. 2

Dependencies of the tunneling light intensity on the intensity of the illuminating light for barrier widths (a) 2λ, (b) 3λ, and (c) 4λ, for the deep defect state in the middle of the photonic bandgap. The defect is situated at a distance d/3 from the output waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pexp-ω-ωcd/c*,

Metrics