Abstract

We show that frequency-wavelength tuning characteristics of acousto-optic coupling can be used for measuring the difference of effective index, group index, and chromatic dispersion between core and cladding modes in single-mode fibers. Chromatic dispersion measurements of a 30-cm-long conventional single-mode fiber, a nonzero dispersion-shifted fiber, and a dispersion-compensating fiber with this new method are presented for the wavelength range 1500–1600 nm. Qualitative agreement with independently measured data is obtained.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
    [CrossRef]
  3. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WJ4-1.
  4. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
    [CrossRef]
  5. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, Opt. Lett. 25, 1499 (2000).
    [CrossRef]
  6. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998), Chap. 12.
  7. R. N. Thurston, J. Acoust. Soc. Am. 64, 1 (1978).
    [CrossRef]
  8. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
    [CrossRef]
  9. T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
    [CrossRef]
  10. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1997), Chap. 2.

2000 (1)

1997 (1)

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

1994 (1)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

1978 (1)

R. N. Thurston, J. Acoust. Soc. Am. 64, 1 (1978).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1997), Chap. 2.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Birks, T. A.

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, Opt. Lett. 25, 1499 (2000).
[CrossRef]

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Culverhouse, D. O.

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998), Chap. 12.

Diez, A.

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kim, B. Y.

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WJ4-1.

Kim, H. S.

Kwang, I. K.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Mangan, B. J.

Park, H. S.

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WJ4-1.

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Reeves, W. H.

Russell, P. St. J.

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, Opt. Lett. 25, 1499 (2000).
[CrossRef]

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Song, K. Y.

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WJ4-1.

Thurston, R. N.

R. N. Thurston, J. Acoust. Soc. Am. 64, 1 (1978).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Yun, S. H.

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
[CrossRef]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WJ4-1.

J. Acoust. Soc. Am. (1)

R. N. Thurston, J. Acoust. Soc. Am. 64, 1 (1978).
[CrossRef]

J. Lightwave Technol. (4)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Opt. Lett. (2)

Other (3)

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WJ4-1.

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998), Chap. 12.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1997), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured frequency of the acoustic wave versus the corresponding resonant wavelength for core-to-cladding mode LP11cl coupling for (a) conventional SMF, (b) NZ-DSF (Corning MetroCor), and (c) DCF (OFS EHS).

Fig. 2
Fig. 2

Acoustic dispersion of the lowest-order flexural acoustic wave on a 125µm-diameter fiber, calculated with an exact analytic solution7 and a simplified closed-form expression.9 The measured data at several frequencies from 1.2 to 3.5 MHz are also shown for comparison.

Fig. 3
Fig. 3

(a) Measured effective-index difference, Δnλ, and (b) group-index difference, Δngλ, between core mode and LP11cl cladding mode for SM fiber, NZ-DSF, and DCF. (c) Measured Δngλ for coupling to LP11cl, LP12cl, and LP13cl cladding modes (solid curves) for the conventional step-index fiber. The values for LP11cl through LP14cl modes (dotted lines) calculated with a core diameter of 8.5 µm and Δn/n of 0.035% are also shown for comparison.

Fig. 4
Fig. 4

Extracted Dcλ for conventional SMF, NZ-DSF, and DCF (solid curves). To obtain Dcλ, we approximate Dclλ, using values for fused silica.10 The dispersion parameters for the three fibers provided by the manufacturer are also shown for comparison (dotted lines).

Tables (1)

Tables Icon

Table 1 Comparison between the Extracted Dispersion Data, Dce, and the Manufacturer’s Dispersion Data, Dcm, at Several Wavelengths [(ps/nm)/km]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δng=λ2Λ2Λffλ,
ΔDλ=-λc-2Λ2Λffλ+2λΛ3Λf2fλ2-λΛ22Λf2fλ2-λΛ2Λf2fλ2,

Metrics