Abstract

Urban optical wireless communication (UOWC) systems are considered a last-mile technology. UOWC systems use the atmosphere as a propagation medium. To provide a line of sight the transceivers are placed on high-rise buildings. However, dynamic wind loads, thermal expansion, and weak earthquakes cause buildings to sway. These sways distort the alignment between transmitter and receiver, causing pointing errors, the outcome of which is fading of the received signal. Furthermore, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, resulting in impaired link performance. A bit-error probability (BEP) model is developed that takes into account both building sway and turbulence-induced log amplitude fluctuations (i.e., fading of signal intensity) in the regime in which the receiver aperture, D0, is smaller than the turbulence coherence diameter, d0. It is assumed that the receiver has knowledge about the marginal statistics of the signal fading and the instantaneous signal-fading state.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arnon, in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, New York, to be published).
  2. S. Arnon, S. Rotman, and N. S. Kopeika, Appl. Opt. 36, 6095 (1997).
    [CrossRef] [PubMed]
  3. T. Kijewski and A. Kareem, Wind Structures 1, 77 (1998).
    [CrossRef]
  4. I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
    [CrossRef]
  5. N. S. Kopeika, A System Engineering Approach to Imaging, Press Monograph 38 (SPIE Press, Bellingham, Wash., 1998).
  6. X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
    [CrossRef]
  7. Building code and standards I.C. 412, I.C. 414, and I.C. 1225 (Standard Intitution of Israel, Tel Aviv, Israel, 1984).

2002 (1)

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

1998 (2)

T. Kijewski and A. Kareem, Wind Structures 1, 77 (1998).
[CrossRef]

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

1997 (1)

Adhikari, P.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Arnon, S.

S. Arnon, S. Rotman, and N. S. Kopeika, Appl. Opt. 36, 6095 (1997).
[CrossRef] [PubMed]

S. Arnon, in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, New York, to be published).

Barclay, M.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

DeCusatis, C.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Kahn, J. M.

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

Kareem, A.

T. Kijewski and A. Kareem, Wind Structures 1, 77 (1998).
[CrossRef]

Kijewski, T.

T. Kijewski and A. Kareem, Wind Structures 1, 77 (1998).
[CrossRef]

Kim, I.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Koontz, J.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Kopeika, N. S.

S. Arnon, S. Rotman, and N. S. Kopeika, Appl. Opt. 36, 6095 (1997).
[CrossRef] [PubMed]

N. S. Kopeika, A System Engineering Approach to Imaging, Press Monograph 38 (SPIE Press, Bellingham, Wash., 1998).

Korevaar, E.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Moursund, C.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Rotman, S.

Ruigrok, R.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Schuster, J.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Stieger, R.

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Zhu, X.

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Commun. (1)

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

Opt. Eng. (1)

I. Kim, R. Stieger, J. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, Opt. Eng. 37, 3143 (1998).
[CrossRef]

Wind Structures (1)

T. Kijewski and A. Kareem, Wind Structures 1, 77 (1998).
[CrossRef]

Other (3)

N. S. Kopeika, A System Engineering Approach to Imaging, Press Monograph 38 (SPIE Press, Bellingham, Wash., 1998).

Building code and standards I.C. 412, I.C. 414, and I.C. 1225 (Standard Intitution of Israel, Tel Aviv, Israel, 1984).

S. Arnon, in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, New York, to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

BEP as a function of σ2GT and σX.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

fθθ=θσ2exp-θ22σ2.
n01+77pT1+7.53×10-3λ2-7733qT10-6,
nTr=n0+nr,
Γnr1,r2=Enr1,nr2,
ΦK=0.033Cn2K-11/3,
σX2Z=0.562πλ7/60ZCn2xZ-x5/6dx,
σx2Z=0.562πλ7/60zCn2xxZ5/6Z-x5/6dx.
fXX=12πσXexp-X-EX22σX2.
I=exp2X-2EX.
PRθ,I=PTηTηRλ/4πZ2GTGRLALTθI,
LTθ=exp-GTθ2,
Py/on,θ,I=12πσN2exp-y-RPRθ,I22σN2, 
Py/off=12πσN2exp-y22σN2.
Λy,θ,I=Py/on,θ,IPy/off=exp--2yRPRθ,I+RPRθ,I22σN2.
BEP=-0PonPoff/on,θ,I+PoffPon/off,θ,IfθθfXXdθdX,
BEPσx,GTσ2=12π-0erfcα exp-2uGTσ2+2σXvexp-u-v2dudv.

Metrics