Abstract

Urban optical wireless communication (UOWC) systems are considered a last-mile technology. UOWC systems use the atmosphere as a propagation medium. To provide a line of sight the transceivers are placed on high-rise buildings. However, dynamic wind loads, thermal expansion, and weak earthquakes cause buildings to sway. These sways distort the alignment between transmitter and receiver, causing pointing errors, the outcome of which is fading of the received signal. Furthermore, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, resulting in impaired link performance. A bit-error probability (BEP) model is developed that takes into account both building sway and turbulence-induced log amplitude fluctuations (i.e., fading of signal intensity) in the regime in which the receiver aperture, D0, is smaller than the turbulence coherence diameter, d0. It is assumed that the receiver has knowledge about the marginal statistics of the signal fading and the instantaneous signal-fading state.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription