Abstract

A novel type of interferometer was designed and tested experimentally. It combines the advantages of the spatial path separation used in the two-wave polarized Jamin interferometer and the high sensitivity that characterizes the multiwave Fabry–Perot interferometer. Furthermore, when it is sandwiched between crossed polarizers it shows a sensitivity to intracavity anisotropies that is proportional to the square of the Fabry–Perot interferometer’s finesse.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Jamin, C. R. Acad. Sci. 42, 482 (1856).
  2. M. J. Jamin, C. R. Acad. Sci. 67, 814 (1868).
  3. M. Brillouin, C. R. Acad. Sci. 137, 786 (1903).
  4. A. Cotton, Rev. Opt. Theor. Instrum. 13, 153 (1934).
  5. P. Barchewitz, Rev. Opt. Theor. Instrum. 13, 167 (1934).
  6. M. A.-A. Lebedeff, Rev. Opt. Theor. Instrum. 9, 385 (1930).
  7. A. Kastler, J. Phys. Rad.11, 38S (1950).
    [CrossRef]
  8. F. V. Kowalski, W. T. Hill, and A. L. Schawlow, Opt. Lett. 2, 112 (1978).
    [CrossRef] [PubMed]
  9. A. Cournoyer, P. Baulaigue, E. Lazarides, H. Blancher, L. Bertrand, and R. Occelli, Appl. Opt. 36, 5252 (1997).
    [CrossRef] [PubMed]
  10. H. Moosmüller and W. P. Arnott, Opt. Lett. 21, 438 (1996).
    [CrossRef]
  11. K. S. Reparsky, L. E. Watson, and J. L. Carlsten, Appl. Opt. 34, 2615 (1995).
    [CrossRef]
  12. A. Kastler, Appl. Opt. 1, 17 (1962).
    [CrossRef]
  13. A. Le Floch and J. M. Lenormand, Appl. Phys. B 28, 303 (1982).
  14. M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, Opt. Commun. 168, 423 (1999).
    [CrossRef]
  15. A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
    [CrossRef]
  16. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today 55(5), 34 (2002).
    [CrossRef]

2002 (1)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today 55(5), 34 (2002).
[CrossRef]

1999 (1)

M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, Opt. Commun. 168, 423 (1999).
[CrossRef]

1997 (1)

1996 (2)

H. Moosmüller and W. P. Arnott, Opt. Lett. 21, 438 (1996).
[CrossRef]

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

1995 (1)

1982 (1)

A. Le Floch and J. M. Lenormand, Appl. Phys. B 28, 303 (1982).

1978 (1)

1962 (1)

1934 (2)

A. Cotton, Rev. Opt. Theor. Instrum. 13, 153 (1934).

P. Barchewitz, Rev. Opt. Theor. Instrum. 13, 167 (1934).

1930 (1)

M. A.-A. Lebedeff, Rev. Opt. Theor. Instrum. 9, 385 (1930).

1903 (1)

M. Brillouin, C. R. Acad. Sci. 137, 786 (1903).

1868 (1)

M. J. Jamin, C. R. Acad. Sci. 67, 814 (1868).

1856 (1)

M. J. Jamin, C. R. Acad. Sci. 42, 482 (1856).

Arnott, W. P.

Barchewitz, P.

P. Barchewitz, Rev. Opt. Theor. Instrum. 13, 167 (1934).

Baulaigue, P.

Bertrand, L.

Blancher, H.

Bretenaker, F.

M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, Opt. Commun. 168, 423 (1999).
[CrossRef]

Brillouin, M.

M. Brillouin, C. R. Acad. Sci. 137, 786 (1903).

Capasso, F.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today 55(5), 34 (2002).
[CrossRef]

Carlsten, J. L.

Cho, A. Y.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today 55(5), 34 (2002).
[CrossRef]

Cotton, A.

A. Cotton, Rev. Opt. Theor. Instrum. 13, 153 (1934).

Cournoyer, A.

Gmachl, C.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today 55(5), 34 (2002).
[CrossRef]

Hill, W. T.

Jamin, M. J.

M. J. Jamin, C. R. Acad. Sci. 67, 814 (1868).

M. J. Jamin, C. R. Acad. Sci. 42, 482 (1856).

Kastler, A.

A. Kastler, Appl. Opt. 1, 17 (1962).
[CrossRef]

A. Kastler, J. Phys. Rad.11, 38S (1950).
[CrossRef]

Kataoka, I.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Kitajima, N.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Kowalski, F. V.

Lazarides, E.

Le Floch, A.

M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, Opt. Commun. 168, 423 (1999).
[CrossRef]

A. Le Floch and J. M. Lenormand, Appl. Phys. B 28, 303 (1982).

Le Naour, R.

M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, Opt. Commun. 168, 423 (1999).
[CrossRef]

Lebedeff, M. A.-A.

M. A.-A. Lebedeff, Rev. Opt. Theor. Instrum. 9, 385 (1930).

Lenormand, J. M.

A. Le Floch and J. M. Lenormand, Appl. Phys. B 28, 303 (1982).

Mitake, T.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Moosmüller, H.

Nakamura, K.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Occelli, R.

Oger, M.

M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, Opt. Commun. 168, 423 (1999).
[CrossRef]

Reparsky, K. S.

Schawlow, A. L.

Sekiguchi, H.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Sivco, D. L.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today 55(5), 34 (2002).
[CrossRef]

Uchisawa, K.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Ueda, A.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Ueda, K.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Uehara, N.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Vallet, M.

M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, Opt. Commun. 168, 423 (1999).
[CrossRef]

Watson, L. E.

Appl. Opt. (3)

Appl. Phys. B (1)

A. Le Floch and J. M. Lenormand, Appl. Phys. B 28, 303 (1982).

C. R. Acad. Sci. (3)

M. J. Jamin, C. R. Acad. Sci. 42, 482 (1856).

M. J. Jamin, C. R. Acad. Sci. 67, 814 (1868).

M. Brillouin, C. R. Acad. Sci. 137, 786 (1903).

Opt. Commun. (1)

M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, Opt. Commun. 168, 423 (1999).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, Opt. Rev. 3, 369 (1996).
[CrossRef]

Phys. Today (1)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today 55(5), 34 (2002).
[CrossRef]

Rev. Opt. Theor. Instrum. (3)

A. Cotton, Rev. Opt. Theor. Instrum. 13, 153 (1934).

P. Barchewitz, Rev. Opt. Theor. Instrum. 13, 167 (1934).

M. A.-A. Lebedeff, Rev. Opt. Theor. Instrum. 9, 385 (1930).

Other (1)

A. Kastler, J. Phys. Rad.11, 38S (1950).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of the JFP interferometer: P, polarizer aligned at 45° to x; A, analyzer; M1, M2, mirrors; S1,S2, polarizing separators made from birefringent crystals; PZT, piezoelectric transducer; RB, razor blade mounted upon a translation stage; D, detector.

Fig. 2
Fig. 2

Experimental Airy functions of the JFP interferometer. o and e, ordinary and extraordinary paths, respectively, of the JFP. Spectra (a)–(e) were obtained for the various values of the ordinary and extraordinary lengths. Note that the extinction shown in (e) allows dark-field detection.

Fig. 3
Fig. 3

(a) Filled circles, measured signal of the JFP interferometer as a function of intracavity losses γ. Solid curve, fit with the quadratic law of Eq. (1). (b) Measurements showing the JFP signal linearization. Curve, linear fit with Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=KF2π2γ2+φ2I0,
IKF2π2γ02+2γ0γI0,

Metrics