Abstract

We describe the observation of a new phenomenon: the cancellation of molecular reorientation that has been achieved in nematic liquid crystals acted on by two competing (pulsed) light beams. The effect is unstable: Starting from the cancellation condition, we have observed patterns related to the presence of a nonlinear phase shift in both beams when their intensity was increased simultaneously. We characterize the behavior of the induced phase shift as a function of the impinging power.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).
  2. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997).
    [CrossRef]
  3. P. J. de Gennes, Physics of Liquid Crystals (Oxford U. Press, Oxford, 1974).
  4. N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
    [CrossRef]
  5. I. C. Khoo, Phys. Rev. A 25, 1040 (1982).
    [CrossRef]
  6. F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, J. Opt. Soc. Am. B 5, 2462 (1988).
    [CrossRef]
  7. E. Santamato, G. Abbate, R. Calselice, P. Maddalena, and A. Sasso, Phys. Rev. A 37, 1375 (1988).
    [CrossRef] [PubMed]
  8. M. Warenghem, J. F. Henninot, and G. Abbate, Opt. Express 2, 483 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  9. M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
    [CrossRef]
  10. R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, Chem. Phys. 271, 323 (2001).
  11. B. Ya. Zel’dovich, S. R. Nersisyan, and N. V. Tabiryan, Zh. Eksp. Teor. Fiz. 88, 1207 (1985).
  12. D. Duca, C. Umeton, and N. V. Tabiryan, Opt. Commun. 93, 103 (1992).
    [CrossRef]
  13. M. Peccianti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
    [CrossRef]
  14. G. Cipparrone, A. De Luca, D. Duca, A. Mazzulla, and C. Umeton, “Realization of a liquid crystal based prototype for duration measurement of picosecond pulses,” Opt. Lasers Eng. (to be published).

2002 (1)

M. Peccianti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

2001 (1)

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, Chem. Phys. 271, 323 (2001).

2000 (1)

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

1998 (1)

1992 (1)

D. Duca, C. Umeton, and N. V. Tabiryan, Opt. Commun. 93, 103 (1992).
[CrossRef]

1988 (2)

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, J. Opt. Soc. Am. B 5, 2462 (1988).
[CrossRef]

E. Santamato, G. Abbate, R. Calselice, P. Maddalena, and A. Sasso, Phys. Rev. A 37, 1375 (1988).
[CrossRef] [PubMed]

1986 (1)

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

1985 (1)

B. Ya. Zel’dovich, S. R. Nersisyan, and N. V. Tabiryan, Zh. Eksp. Teor. Fiz. 88, 1207 (1985).

1982 (1)

I. C. Khoo, Phys. Rev. A 25, 1040 (1982).
[CrossRef]

Abbate, G.

M. Warenghem, J. F. Henninot, and G. Abbate, Opt. Express 2, 483 (1998), http://www.opticsexpress.org .
[CrossRef] [PubMed]

E. Santamato, G. Abbate, R. Calselice, P. Maddalena, and A. Sasso, Phys. Rev. A 37, 1375 (1988).
[CrossRef] [PubMed]

Assanto, G.

M. Peccianti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Bloisi, F.

Calselice, R.

E. Santamato, G. Abbate, R. Calselice, P. Maddalena, and A. Sasso, Phys. Rev. A 37, 1375 (1988).
[CrossRef] [PubMed]

Caputo, R.

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, Chem. Phys. 271, 323 (2001).

Cipparrone, G.

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, J. Opt. Soc. Am. B 5, 2462 (1988).
[CrossRef]

G. Cipparrone, A. De Luca, D. Duca, A. Mazzulla, and C. Umeton, “Realization of a liquid crystal based prototype for duration measurement of picosecond pulses,” Opt. Lasers Eng. (to be published).

de Gennes, P. J.

P. J. de Gennes, Physics of Liquid Crystals (Oxford U. Press, Oxford, 1974).

De Luca, A.

M. Peccianti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

G. Cipparrone, A. De Luca, D. Duca, A. Mazzulla, and C. Umeton, “Realization of a liquid crystal based prototype for duration measurement of picosecond pulses,” Opt. Lasers Eng. (to be published).

Duca, D.

D. Duca, C. Umeton, and N. V. Tabiryan, Opt. Commun. 93, 103 (1992).
[CrossRef]

G. Cipparrone, A. De Luca, D. Duca, A. Mazzulla, and C. Umeton, “Realization of a liquid crystal based prototype for duration measurement of picosecond pulses,” Opt. Lasers Eng. (to be published).

Henninot, J. F.

Khoo, I. C.

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

I. C. Khoo, Phys. Rev. A 25, 1040 (1982).
[CrossRef]

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

Maddalena, P.

E. Santamato, G. Abbate, R. Calselice, P. Maddalena, and A. Sasso, Phys. Rev. A 37, 1375 (1988).
[CrossRef] [PubMed]

Mazzulla, A.

G. Cipparrone, A. De Luca, D. Duca, A. Mazzulla, and C. Umeton, “Realization of a liquid crystal based prototype for duration measurement of picosecond pulses,” Opt. Lasers Eng. (to be published).

Nersisyan, S. R.

B. Ya. Zel’dovich, S. R. Nersisyan, and N. V. Tabiryan, Zh. Eksp. Teor. Fiz. 88, 1207 (1985).

Peccianti, M.

M. Peccianti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Santamato, E.

E. Santamato, G. Abbate, R. Calselice, P. Maddalena, and A. Sasso, Phys. Rev. A 37, 1375 (1988).
[CrossRef] [PubMed]

Sasso, A.

E. Santamato, G. Abbate, R. Calselice, P. Maddalena, and A. Sasso, Phys. Rev. A 37, 1375 (1988).
[CrossRef] [PubMed]

Simoni, F.

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, J. Opt. Soc. Am. B 5, 2462 (1988).
[CrossRef]

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997).
[CrossRef]

Sukhov, A. V.

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, Chem. Phys. 271, 323 (2001).

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Tabiryan, N. V.

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, Chem. Phys. 271, 323 (2001).

D. Duca, C. Umeton, and N. V. Tabiryan, Opt. Commun. 93, 103 (1992).
[CrossRef]

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

B. Ya. Zel’dovich, S. R. Nersisyan, and N. V. Tabiryan, Zh. Eksp. Teor. Fiz. 88, 1207 (1985).

Umeton, C.

M. Peccianti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, Chem. Phys. 271, 323 (2001).

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

D. Duca, C. Umeton, and N. V. Tabiryan, Opt. Commun. 93, 103 (1992).
[CrossRef]

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, J. Opt. Soc. Am. B 5, 2462 (1988).
[CrossRef]

G. Cipparrone, A. De Luca, D. Duca, A. Mazzulla, and C. Umeton, “Realization of a liquid crystal based prototype for duration measurement of picosecond pulses,” Opt. Lasers Eng. (to be published).

Ushakov, R. F.

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, Chem. Phys. 271, 323 (2001).

Vicari, L.

Warenghem, M.

Zel’dovich, B. Ya.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

B. Ya. Zel’dovich, S. R. Nersisyan, and N. V. Tabiryan, Zh. Eksp. Teor. Fiz. 88, 1207 (1985).

Appl. Phys. Lett. (2)

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

Chem. Phys. (1)

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, Chem. Phys. 271, 323 (2001).

J. Opt. Soc. Am. B (1)

Mol. Cryst. Liq. Cryst. (1)

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Opt. Commun. (1)

D. Duca, C. Umeton, and N. V. Tabiryan, Opt. Commun. 93, 103 (1992).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

E. Santamato, G. Abbate, R. Calselice, P. Maddalena, and A. Sasso, Phys. Rev. A 37, 1375 (1988).
[CrossRef] [PubMed]

I. C. Khoo, Phys. Rev. A 25, 1040 (1982).
[CrossRef]

Zh. Eksp. Teor. Fiz. (1)

B. Ya. Zel’dovich, S. R. Nersisyan, and N. V. Tabiryan, Zh. Eksp. Teor. Fiz. 88, 1207 (1985).

Other (4)

G. Cipparrone, A. De Luca, D. Duca, A. Mazzulla, and C. Umeton, “Realization of a liquid crystal based prototype for duration measurement of picosecond pulses,” Opt. Lasers Eng. (to be published).

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997).
[CrossRef]

P. J. de Gennes, Physics of Liquid Crystals (Oxford U. Press, Oxford, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental geometry. (b) Setup: W, λ/2 plate; P’s polarizers; M’s, mirrors; B.S., 50% beam splitter; CC, corner-cube retroreflector; L’s, lenses; S, sample; SC, screen.

Fig. 2
Fig. 2

(a) Cancellation effect. The presence of two dotlike spots shows that there is no nonlinear phase shift. (b) Starting from the previous cancellation state, typical self-phase-modulation rings (which are due to director reorientation) are observed in the far-field zone of the first beam when the second beam is stopped. The impinging intensity of the first beam is the same as in (a).

Fig. 3
Fig. 3

Self-phase-modulation rings appear in the far-field zones of both beams when the total impinging intensity exceeds the threshold value for the LIFT II.

Fig. 4
Fig. 4

The number of SPM rings observed in the far-field zone of the beam with the highest divergence versus the total impinging average power for two values of the angle of incidence: (a) α=43°, (b) α=33°. The corresponding average intensity is 104 W/cm2 at 80 mW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ1,2=2πLλa4β1,22=Kβ1,22,
δϕ1=2πN1=ϕ1θ-ϕ1=Kθ2-2αθ, δϕ2=2πN2=ϕ2θ-ϕ2=Kθ2+2αθ.

Metrics