Abstract

We experimentally demonstrate the amplification of picosecond pulses at high repetition rates through the coherent addition of successive pulses of a mode-locked pulse train in a high-finesse optical cavity equipped with cavity dumping. Amplification greater than 30 times is obtained at a repetition rate of 253 kHz, boosting the 5.3-nJ pulses from a commercial mode-locked picosecond Ti:sapphire laser to pulse energies of more than 150 nJ.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
    [CrossRef]
  2. T. B. Norris, Opt. Lett. 17, 1009 (1992).
    [CrossRef] [PubMed]
  3. S. H. Cho, F. X. Kartner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, Opt. Lett. 26, 560 (2001).
    [CrossRef]
  4. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, Opt. Lett. 18, 1822 (1993).
    [CrossRef] [PubMed]
  5. M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Opt. Lett. 19, 572 (1994).
    [CrossRef] [PubMed]
  6. G. N. Gibson, R. Klank, F. Gibson, and B. E. Bouma, Opt. Lett. 21, 1055 (1996).
    [CrossRef] [PubMed]
  7. T. Heupel, M. Weitz, and T. W. Hänsch, Opt. Lett. 22, 1719 (1997).
    [CrossRef]
  8. G. T. Maker and A. I. Ferguson, Appl. Phys. Lett. 55, 1158 (1989).
    [CrossRef]
  9. G. McConnell, A. I. Ferguson, and N. Langford, J. Phys. D 34, 2408 (2001).
    [CrossRef]
  10. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
    [CrossRef]
  11. T. W. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).
  12. R. J. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
    [CrossRef]
  13. T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]

2002

R. J. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
[CrossRef]

2001

2000

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

1999

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

1997

1996

1994

1993

1992

1989

G. T. Maker and A. I. Ferguson, Appl. Phys. Lett. 55, 1158 (1989).
[CrossRef]

1980

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Bouma, B. E.

Brabec, T.

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Cho, S. H.

Couillaud, B.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Crosson, E. R.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Cunningham, J. E.

de Boeij, W. P.

Ferguson, A. I.

G. McConnell, A. I. Ferguson, and N. Langford, J. Phys. D 34, 2408 (2001).
[CrossRef]

G. T. Maker and A. I. Ferguson, Appl. Phys. Lett. 55, 1158 (1989).
[CrossRef]

Fujimoto, J. G.

Gibson, F.

Gibson, G. N.

Haar, P.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).

T. Heupel, M. Weitz, and T. W. Hänsch, Opt. Lett. 22, 1719 (1997).
[CrossRef]

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Heupel, T.

T. W. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).

T. Heupel, M. Weitz, and T. W. Hänsch, Opt. Lett. 22, 1719 (1997).
[CrossRef]

Ippen, E. P.

Jones, R. J.

R. J. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
[CrossRef]

Kartner, F. X.

Klank, R.

Knox, W. H.

Krausz, F.

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Langford, N.

G. McConnell, A. I. Ferguson, and N. Langford, J. Phys. D 34, 2408 (2001).
[CrossRef]

Maker, G. T.

G. T. Maker and A. I. Ferguson, Appl. Phys. Lett. 55, 1158 (1989).
[CrossRef]

Marcus, G. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

McConnell, G.

G. McConnell, A. I. Ferguson, and N. Langford, J. Phys. D 34, 2408 (2001).
[CrossRef]

Morgner, U.

Norris, T. B.

Paldus, B. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Paye, J.

Pshenichnikov, M. S.

Ramaswamy, M.

Schwettman, H. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Spence, T. G.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Ulman, M.

Weitz, M.

T. W. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).

T. Heupel, M. Weitz, and T. W. Hänsch, Opt. Lett. 22, 1719 (1997).
[CrossRef]

Wiersma, D. A.

Ye, J.

R. J. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
[CrossRef]

Zare, R. N.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Appl. Phys. Lett.

G. T. Maker and A. I. Ferguson, Appl. Phys. Lett. 55, 1158 (1989).
[CrossRef]

J. Phys. D

G. McConnell, A. I. Ferguson, and N. Langford, J. Phys. D 34, 2408 (2001).
[CrossRef]

Opt. Lett.

R. J. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
[CrossRef]

Opt. Commun.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Opt. Lett.

Rev. Mod. Phys.

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Rev. Sci. Instrum.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, Rev. Sci. Instrum. 70, 4 (1999).
[CrossRef]

Other

T. W. Hänsch, T. Heupel, and M. Weitz, “Method and device for generating phase-coherent light pulses,” U.S. patent 6, 038, 055 (March 14, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the passive optical amplifier. The Ti:sapphire laser (Coherent, MIRA 900) is pumped by a 5-W, 532-nm laser (Coherent, Verdi V5). L1, concave lens (r=-75 mm); L2, convex lens (f=125 mm); Pol, polarizer; M1, output coupler (0.95% at 835 nm) (CVI); M2–M4, high reflectors (R>99.997%) (Research Electro Optics); M5, M6, concave high reflectors (R>99.997%, r=-100 mm) (Research Electro Optics); Bragg cell, 3-mm fused silica cavity dumper (Harris) driven by a 16-W, 10-ns rf pulse cavity dumper driver (APE Berlin); PBS, polarizing beam splitter; λ/4, quarter-wave plate; PZT, piezoelectric transducer. Note: the mention of any specific company is for technical communication only and does not represent endorsement.

Fig. 2
Fig. 2

Pulse amplification with the passive optical amplifier. (a) Intracavity enhancement for various average powers of the incoming pulse train. (b) Pulse amplification as a function of dumping frequency with single-pass dumping efficiencies of 7.5% (open circles) and 30% (solid circles). Pulse energies (right axis) are obtained when seeding the amplifier with 400 mW from the Ti:sapphire laser. Note that dumping at frequencies beyond 2 MHz is limited by dumper electronics rather than by optical constraints.

Fig. 3
Fig. 3

Autocorrelation of 140-nJ amplified pulses at 475 kHz. Pulse width amounts to 3.4 ps, assuming a Gaussian envelope.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N=4TL2=4TF2π2,

Metrics