Abstract

Mid-infrared ultrashort pulses of 9.2-µm center wavelength are characterized in both amplitude and phase. This is achieved by use of a variant of spectral phase interferometry for direct electric field reconstruction in which spectral interferometry has been replaced with time-domain interferometry, a technique that is well suited for infrared pulses. The setup permits simultaneous recording of the second-order interferometric autocorrelation, thus providing an independent check on the retrieved spectral phase.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
    [CrossRef]
  2. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  3. C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).
  4. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  5. C. Dorrer, P. Londero, and I. A. Walmsley, Opt. Lett. 26, 1510 (2001).
    [CrossRef]
  6. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, Opt. Lett. 25, 1478 (2000).
    [CrossRef]
  7. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
    [CrossRef]
  8. B. A. Richman, M. A. Krulbügel, and R. Trebino, Opt. Lett. 22, 721 (1997).
    [CrossRef] [PubMed]
  9. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, Opt. Lett. 27, 131 (2002).
    [CrossRef]
  10. S. Yeremenko, A. Baltuska, F. de Haan, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 27, 1171 (2002).
    [CrossRef]
  11. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, Opt. Lett. 28, 278 (2003).
    [CrossRef] [PubMed]
  12. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986).
  13. K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
    [CrossRef]
  14. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]

2003 (1)

2002 (2)

2001 (2)

C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).

C. Dorrer, P. Londero, and I. A. Walmsley, Opt. Lett. 26, 1510 (2001).
[CrossRef]

2000 (3)

D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, Opt. Lett. 25, 1478 (2000).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

1998 (1)

1997 (2)

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

B. A. Richman, M. A. Krulbügel, and R. Trebino, Opt. Lett. 22, 721 (1997).
[CrossRef] [PubMed]

1996 (1)

1989 (1)

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Baltuska, A.

Beddard, T.

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Brown, C. T. A.

de Haan, F.

de Haseth, J. A.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986).

DeLong, K.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Dorrer, C.

C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).

C. Dorrer, P. Londero, and I. A. Walmsley, Opt. Lett. 26, 1510 (2001).
[CrossRef]

Fittinghoff, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986).

Hamm, P.

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

Herzog, R.

Huber, R.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Iaconis, C.

Joffre, M.

Kaindl, R. A.

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

Kane, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Kaplan, D.

Kompa, K. L.

Krulbügel, M. A.

Krumbügel, M.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Leitenstorfer, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Londero, P.

Loza-Alvarez, P.

Mogi, K.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Monmayrant, A.

Motzkus, M.

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Oksenhendler, T.

Proch, D.

Pshenichnikov, M. S.

Reid, D. T.

Reimann, K.

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

Richman, B.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Richman, B. A.

Sibbett, W.

Sweester, J.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Tournois, P.

Trebino, R.

B. A. Richman, M. A. Krulbügel, and R. Trebino, Opt. Lett. 22, 721 (1997).
[CrossRef] [PubMed]

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Walmsley, I. A.

Weiner, A. M.

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

Wiersma, D. A.

Witte, T.

Woerner, M.

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

Wong, V.

Wurm, M.

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

Yamada, H.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Yeremenko, S.

Zeidler, D.

Appl. Phys. Lett. (1)

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

C. R. Acad. Sci. Paris (1)

C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).

Chemical Analysis (1)

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986).

IEEE J. Quantum Electron. (1)

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (7)

Rev. Sci. Instrum. (1)

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for time-domain HOT SPIDER, based on a second-order collinear autocorrelator (area inside the dotted box). Second-harmonic generation is achieved in a GaAs crystal of 100-µm thickness and collected with a HgCdTe detector after transmission through a 26-µm bandpass filter (F). Scanning of time delay τ is achieved with a 2-Hz shaker and a copropagating He–Ne laser for accurate length calibration. To transform this standard autocorrelator into a time-domain HOT SPIDER apparatus we add two beam splitters, an optical chopper (C), and two tilted CaF2 windows, thus generating the additional stretched pulse.

Fig. 2
Fig. 2

Correlation function ΔST2τ measured for three values of delay T. Tb-Ta=990 fs, corresponding to frequency shear δω=0.97 THz. Tc is chosen such that the pulse replica Et-Tc does not overlap the stretched pulse ESt. Note that the fact that (a) points up and (b) points down is fortuitous: In (a) the short pulse Et-T and the stretched pulse happen to interfere constructively during their overlap, whereas in (b) they interfere destructively. This effect depends on the exact choice of T and has no influence on the retrieved spectral phase.

Fig. 3
Fig. 3

Spectral (a) intensity and (b) phase of a nearly transform-limited infrared pulse (squares) and the same pulse after transmission through a 1.77-mm-thick CaF2 window (triangles). Note the effect of absorption in CaF2 on the low-energy side of the spectrum. The spectral intensity was obtained through a Fourier transform of the first-order autocorrelation that we recorded by blocking the stretched beam and removing the nonlinear crystal and filter in the setup of Fig. 1. The spectral phase was retrieved by use of the time-domain HOT SPIDER technique. The solid curve shows the spectral phase calculated by the addition of the known dispersion of CaF2 to the phase measured for the undispersed pulse.

Fig. 4
Fig. 4

Second-order interferometric autocorrelation (filled circles) measured (a) for the nearly transform-limited infrared pulses and (b) after dispersion through a 1.77-mm-thick CaF2 window. The solid curves show a calculation based on the measured spectrum and the spectral phase retrieved by time-domain HOT SPIDER [Fig. 3(b)].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ST2τ=-+Et-τ+Et-T+ESt4dt.
ΔST,2ω2τ=6-+E*2t-τ×2Et-TESt+ES2tdt,

Metrics