Abstract

We report the experimental generation, simply by use of a subnanosecond microchip laser at 532 nm and a conventional dispersion-shifted fiber, of a supercontinuum that spans more than 1100 nm. We show by detailed spectral analysis that this supercontinuum originates from a preliminary four-wave mixing process with multimode phase matching and subsequent double-cascade stimulated Raman scattering and is transversely single mode as a result of Raman-induced mode competition. This technique is believed to be the simplest configuration that allows one to generate a stable supercontinuum.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
    [CrossRef]
  2. P. Baldeck and R. R. Alfano, J. Lightwave Technol. 5, 1712 (1987).
    [CrossRef]
  3. I. Ilev, H. Kumagau, K. Tyoda, and I. Koprinkov, Appl. Opt. 35, 2548 (1996).
    [CrossRef] [PubMed]
  4. G. A. Nowak, J. Kim, and M. N. Islam, Appl. Opt. 38, 7364 (1999).
    [CrossRef]
  5. J. K. Ranka, S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  6. T. A. Birks, J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  7. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
    [CrossRef]
  8. A. V. Husakou and J. Herrmann, J. Opt. Soc. Am. B 19, 2171 (2002).
    [CrossRef]
  9. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, Opt. Express 10, 1083 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  10. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
    [CrossRef]
  11. S. Coen, A. H. Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, J. Opt. Soc. Am. B 19, 753 (2002).
    [CrossRef]
  12. R. H. Stolen, IEEE J. Quantum Electron. 3, 100 (1975).
    [CrossRef]
  13. K. S. Chiang, Opt. Lett. 17, 352 (1992).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).

2002 (4)

2001 (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

2000 (2)

1999 (1)

1996 (1)

1992 (1)

1987 (1)

P. Baldeck and R. R. Alfano, J. Lightwave Technol. 5, 1712 (1987).
[CrossRef]

1976 (1)

C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

1975 (1)

R. H. Stolen, IEEE J. Quantum Electron. 3, 100 (1975).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).

Alfano, R. R.

P. Baldeck and R. R. Alfano, J. Lightwave Technol. 5, 1712 (1987).
[CrossRef]

Baldeck, P.

P. Baldeck and R. R. Alfano, J. Lightwave Technol. 5, 1712 (1987).
[CrossRef]

Birks, T. A.

Broeng, J.

Chiang, K. S.

Coen, S.

Dudley, J. M.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Eggleton, B. J.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Genty, G.

Grossard, N.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Harvey, J. D.

Herrmann, J.

Husakou, A. V.

Ilev, I.

Islam, M. N.

Kaivola, M.

Kim, J.

Knight, J. C.

Koprinkov, I.

Kumagau, H.

Lehtonen, M.

Leonhardt, R.

Lin, C.

C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

Ludvigsen, H.

Lun Chau, A. H.

Maillotte, H.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Nowak, G. A.

Provino, L.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Ranka, J. K.

Russell, P. St. J.

Stentz, A. J.

Stolen, R. H.

C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

R. H. Stolen, IEEE J. Quantum Electron. 3, 100 (1975).
[CrossRef]

Tyoda, K.

Wadsworth, J.

Wadsworth, W. J.

Windeler, R. S.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Windeler, S.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, IEEE J. Quantum Electron. 3, 100 (1975).
[CrossRef]

J. Lightwave Technol. (1)

P. Baldeck and R. R. Alfano, J. Lightwave Technol. 5, 1712 (1987).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (1)

Opt. Lett. (3)

Optics and Photonics Series (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Output spectrum of the SC at P0=10.5 mW (resolution, 0.1 nm). Pump wavelength P at 532 nm is indicated by an arrow.

Fig. 2
Fig. 2

Output spectra for increasing pump power from (a) P0=1.72 mW to (d) P0=1.83 mW.

Fig. 3
Fig. 3

Modal distribution of the FWM spectrum for (a) the first multimode parametric process near P and (b) both parametric processes near P and S1. AS1 and AS2 are the corresponding anti-Stokes waves.

Fig. 4
Fig. 4

(a) Modal distribution of the SC in the spectral domain recorded with a CCD camera (the spatial transverse dimension is along the vertical axis). Spatial far-field output intensity distribution (b) without and (c) with chromatic filtering.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β101-β111×Ω+β2×Ω2/2=0,

Metrics