Abstract

We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Yu, W. Zhang, and J. A. R. Williams, IEEE Photon. Technol. Lett. 12, 1183 (2000).
    [CrossRef]
  2. W. Zhang, G. Yu, and J. A. R. Williams, Electron. Lett. 36, 1708 (2000).
    [CrossRef]
  3. J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 640 (1999).
    [CrossRef]
  4. J. Capmany, D. Pastor, and B. Ortega, IEEE Trans. Microwave Theory Tech. 47, 1321 (1999).
    [CrossRef]
  5. J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 494 (1999).
    [CrossRef]
  6. B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, Electron. Lett. 38, 1328 (2002).
    [CrossRef]
  7. C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.
  8. Y. Hibino, IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002).
    [CrossRef]

2002

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, Electron. Lett. 38, 1328 (2002).
[CrossRef]

Y. Hibino, IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002).
[CrossRef]

2000

G. Yu, W. Zhang, and J. A. R. Williams, IEEE Photon. Technol. Lett. 12, 1183 (2000).
[CrossRef]

W. Zhang, G. Yu, and J. A. R. Williams, Electron. Lett. 36, 1708 (2000).
[CrossRef]

1999

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 640 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, IEEE Trans. Microwave Theory Tech. 47, 1321 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 494 (1999).
[CrossRef]

Baker, N.

C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.

Bennion, I.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, Electron. Lett. 38, 1328 (2002).
[CrossRef]

Besley, J.

C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.

Capmany, J.

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 494 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 640 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, IEEE Trans. Microwave Theory Tech. 47, 1321 (1999).
[CrossRef]

Gwandu, B. A. L.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, Electron. Lett. 38, 1328 (2002).
[CrossRef]

Hibino, Y.

Y. Hibino, IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002).
[CrossRef]

Lim, C.

C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.

Marra, C.

C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.

Nirmalathas, A.

C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.

Novak, D.

C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.

Ortega, B.

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 494 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 640 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, IEEE Trans. Microwave Theory Tech. 47, 1321 (1999).
[CrossRef]

Pastor, D.

J. Capmany, D. Pastor, and B. Ortega, IEEE Trans. Microwave Theory Tech. 47, 1321 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 640 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 494 (1999).
[CrossRef]

Reekie, L.

C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.

Williams, J. A. R.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, Electron. Lett. 38, 1328 (2002).
[CrossRef]

W. Zhang, G. Yu, and J. A. R. Williams, Electron. Lett. 36, 1708 (2000).
[CrossRef]

G. Yu, W. Zhang, and J. A. R. Williams, IEEE Photon. Technol. Lett. 12, 1183 (2000).
[CrossRef]

Yu, G.

G. Yu, W. Zhang, and J. A. R. Williams, IEEE Photon. Technol. Lett. 12, 1183 (2000).
[CrossRef]

W. Zhang, G. Yu, and J. A. R. Williams, Electron. Lett. 36, 1708 (2000).
[CrossRef]

Zhang, L.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, Electron. Lett. 38, 1328 (2002).
[CrossRef]

Zhang, W.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, Electron. Lett. 38, 1328 (2002).
[CrossRef]

W. Zhang, G. Yu, and J. A. R. Williams, Electron. Lett. 36, 1708 (2000).
[CrossRef]

G. Yu, W. Zhang, and J. A. R. Williams, IEEE Photon. Technol. Lett. 12, 1183 (2000).
[CrossRef]

Electron. Lett.

W. Zhang, G. Yu, and J. A. R. Williams, Electron. Lett. 36, 1708 (2000).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 640 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, Electron. Lett. 35, 494 (1999).
[CrossRef]

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, Electron. Lett. 38, 1328 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Hibino, IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Yu, W. Zhang, and J. A. R. Williams, IEEE Photon. Technol. Lett. 12, 1183 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. Capmany, D. Pastor, and B. Ortega, IEEE Trans. Microwave Theory Tech. 47, 1321 (1999).
[CrossRef]

OSA Trends in Optics and Photonics Series

C. Marra, A. Nirmalathas, C. Lim, D. Novak, L. Reekie, J. Besley, and N. Baker, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 1090–1101.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical transversal filter structure. SOA, semiconductor optical amplifier.

Fig. 2
Fig. 2

Normalized rf amplitude for the sliced spectrum case of Fig. 1. Inset, precise measurement of the first passband.

Fig. 3
Fig. 3

(a) Normalized rf amplitude: measured (thick curve) and simulated (thin curve with circles). Six slices spaced 3.2 nm apart. FSR, 780 MHz. (b) Decay envelope as a result of dispersion and slice width.

Fig. 4
Fig. 4

Normalized rf response for 24 slices (1542.9–1561.3 nm), with 0.8-nm wavelength spacing. FSR, 3.1 GHz; MSLR, 14 dB; 3-dB bandwidth, 125 MHz. Q factor, 24.8.

Fig. 5
Fig. 5

rf response for six apodized slices, spaced 3.2 nm apart. FSR, 780 MHz; 3-dB bandwidth, 200 MHz; MSLR, 15 dB.

Metrics