Abstract

Polarization decorrelation in single-mode fibers with randomly varying elliptical birefringence is studied. It is found that the effects of ellipticity on the polarization decorrelation length depend on the relative sizes of the beat length and the autocorrelation length of the birefringence fluctuations in the fiber. However, the evolution of the differential group delay remains unaffected by ellipticity.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. A. Wai and C. R. Menyuk, Opt. Lett. 19, 1517 (1994).
    [CrossRef] [PubMed]
  2. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  3. N. Gisin, Opt. Commun. 86, 371 (1991).
    [CrossRef]
  4. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, Opt. Lett. 25, 1322 (2000).
    [CrossRef]
  5. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef] [PubMed]
  6. T. Ueda and W. L. Kath, Physica D 55, 166 (1992).
    [CrossRef]
  7. C. D. Poole, Opt. Lett. 13, 687 (1988).
    [CrossRef]
  8. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, New York, 1992).
    [CrossRef]

2000

1996

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

1994

1992

T. Ueda and W. L. Kath, Physica D 55, 166 (1992).
[CrossRef]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, New York, 1992).
[CrossRef]

1991

N. Gisin, Opt. Commun. 86, 371 (1991).
[CrossRef]

1988

1979

Galtarossa, A.

Gisin, N.

N. Gisin, Opt. Commun. 86, 371 (1991).
[CrossRef]

Kath, W. L.

T. Ueda and W. L. Kath, Physica D 55, 166 (1992).
[CrossRef]

Kloeden, P. E.

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, New York, 1992).
[CrossRef]

Menyuk, C. R.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

P. K. A. Wai and C. R. Menyuk, Opt. Lett. 19, 1517 (1994).
[CrossRef] [PubMed]

Palmieri, L.

Platen, E.

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, New York, 1992).
[CrossRef]

Poole, C. D.

Schiano, M.

Simon, A.

Tambosso, T.

Ueda, T.

T. Ueda and W. L. Kath, Physica D 55, 166 (1992).
[CrossRef]

Ulrich, R.

Wai, P. K. A.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

P. K. A. Wai and C. R. Menyuk, Opt. Lett. 19, 1517 (1994).
[CrossRef] [PubMed]

Appl. Opt.

J. Lightwave Technol.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Opt. Commun.

N. Gisin, Opt. Commun. 86, 371 (1991).
[CrossRef]

Opt. Lett.

Physica D

T. Ueda and W. L. Kath, Physica D 55, 166 (1992).
[CrossRef]

Other

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, New York, 1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Polarization decorrelation length versus hfiber/LB. The thick solid line represents the results for local coordinate frame A and τ/σ=0; on the scale of the figure, the results for other values of τ/σ or for coordinate frame C are indistinguishable. The remaining three curves show the results for frame B, with τ/σ ratios 0, 0.5, and 1 represented by the thin solid, dashed, and dashed–dotted curves, respectively.

Fig. 2
Fig. 2

Graphs of S1z/S10 versus distance z for hfiber/LB=0.1 when measured in coordinate frame B. The τ/σ ratios 0, 0.5, and 1 are represented by the solid, dashed, and dashed–dotted curves, respectively.

Fig. 3
Fig. 3

Polarization decorrelation lengths with ellipticity versus hfiber/LB, relative to the corresponding lengths without ellipticity. The circles and the curve with circles show the results for coordinate frames A and B, respectively, when τ/σ=0.5. The corresponding results for the isotropic case τ/σ=1 are shown by crosses and the curve with crosses, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dAdz=ix1x2+ix3x2-ix3-x1A.
dxk/dz=-αxk+σgkz,    k=1,2,
Egkz=0,    Egkzgkz+u=δu,k=1,2,
dx3/dz=-αx3+τg3z,
dS/dz=Wz,ω×S,
dΩdz=Wω+W×Ω.
τd2=2hfiber2Δ2exp-z/hfiber+z/hfiber-1,

Metrics