Abstract

A fully three-dimensional finite-difference time domain numerical model is presented for calculating the out-of-plane radiation loss in photonic-crystal slab waveguides. The propagation loss of a single-line defect waveguide in triangular-lattice photonic crystals is calculated for suspended-membrane, oxidized-lower-cladding, and deeply etched structures. The results show that low-loss waveguides are achievable for sufficiently suspended membranes and oxidized-lower-cladding structures.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).
  2. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  3. J.-P. Berenger, J. Comput. Phys. 127, 363 (1996).
    [CrossRef]
  4. C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16635 (1995).
    [CrossRef]
  5. D. H. Choi and W. J. R. Hoefer, IEEE Trans. Microwave Theory Tech. 34, 1464 (1986).
    [CrossRef]
  6. M. Celuch-Marcysiak and W. K. Gwarek, IEEE Trans. Microwave Theory Tech. 43, 860 (1995).
    [CrossRef]
  7. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  8. A. Talneau, L. Le Gouezigou, and N. Bouadma, Opt. Lett. 26, 1259 (2001).
    [CrossRef]
  9. C. J. M. Smith, Appl. Phys. Lett. 77, 2813 (2000).
    [CrossRef]
  10. M. Loncar, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 18, 1362 (2001).
    [CrossRef]
  11. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
    [CrossRef]
  12. W. Tung and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
    [CrossRef]

2002 (1)

W. Tung and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
[CrossRef]

2001 (3)

M. Loncar, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 18, 1362 (2001).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
[CrossRef]

A. Talneau, L. Le Gouezigou, and N. Bouadma, Opt. Lett. 26, 1259 (2001).
[CrossRef]

2000 (1)

C. J. M. Smith, Appl. Phys. Lett. 77, 2813 (2000).
[CrossRef]

1996 (1)

J.-P. Berenger, J. Comput. Phys. 127, 363 (1996).
[CrossRef]

1995 (3)

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16635 (1995).
[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

M. Celuch-Marcysiak and W. K. Gwarek, IEEE Trans. Microwave Theory Tech. 43, 860 (1995).
[CrossRef]

1989 (1)

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

1986 (1)

D. H. Choi and W. J. R. Hoefer, IEEE Trans. Microwave Theory Tech. 34, 1464 (1986).
[CrossRef]

1966 (1)

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

Berenger, J.-P.

J.-P. Berenger, J. Comput. Phys. 127, 363 (1996).
[CrossRef]

Bouadma, N.

Celuch-Marcysiak, M.

M. Celuch-Marcysiak and W. K. Gwarek, IEEE Trans. Microwave Theory Tech. 43, 860 (1995).
[CrossRef]

Chan, C. T.

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16635 (1995).
[CrossRef]

Choi, D. H.

D. H. Choi and W. J. R. Hoefer, IEEE Trans. Microwave Theory Tech. 34, 1464 (1986).
[CrossRef]

Fan, S.

W. Tung and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
[CrossRef]

Gwarek, W. K.

M. Celuch-Marcysiak and W. K. Gwarek, IEEE Trans. Microwave Theory Tech. 43, 860 (1995).
[CrossRef]

Ho, K. M.

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16635 (1995).
[CrossRef]

Hoefer, W. J. R.

D. H. Choi and W. J. R. Hoefer, IEEE Trans. Microwave Theory Tech. 34, 1464 (1986).
[CrossRef]

Le Gouezigou, L.

Loncar, M.

M. Loncar, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 18, 1362 (2001).
[CrossRef]

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Schafer, R. W.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Scherer, A.

M. Loncar, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 18, 1362 (2001).
[CrossRef]

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
[CrossRef]

Smith, C. J. M.

C. J. M. Smith, Appl. Phys. Lett. 77, 2813 (2000).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
[CrossRef]

Talneau, A.

Tung, W.

W. Tung and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
[CrossRef]

Vuckovic, J.

M. Loncar, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 18, 1362 (2001).
[CrossRef]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
[CrossRef]

Yee, K. S.

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
[CrossRef]

Yu, Q. L.

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16635 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

C. J. M. Smith, Appl. Phys. Lett. 77, 2813 (2000).
[CrossRef]

W. Tung and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
[CrossRef]

Electron. Lett. (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, Electron. Lett. 37, 293 (2001).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

IEEE Trans. Microwave Theory Tech. (2)

D. H. Choi and W. J. R. Hoefer, IEEE Trans. Microwave Theory Tech. 34, 1464 (1986).
[CrossRef]

M. Celuch-Marcysiak and W. K. Gwarek, IEEE Trans. Microwave Theory Tech. 43, 860 (1995).
[CrossRef]

J. Comput. Phys. (1)

J.-P. Berenger, J. Comput. Phys. 127, 363 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

M. Loncar, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 18, 1362 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

C. T. Chan, Q. L. Yu, and K. M. Ho, Phys. Rev. B 51, 16635 (1995).
[CrossRef]

Other (2)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Illustration of (a) suspended-membrane, (b) oxidized-lower-cladding, and (c) deeply etched structures and their dispersion diagram for vertically even (TE-like) guided modes. Inset on the dispersion diagrams are the unit cells applied in the photonic crystal and the defect waveguide band structure calculations.

Fig. 2
Fig. 2

Out-of-plane radiation loss as a function of (a) the in-plane wave vector β and (b), (c) the normalized frequency for the photonic-crystal defect slab waveguides modeled in this work. The lattice constant a=450 nm for the deeply etched waveguide and 420 nm for the rest of the cases. Points are calculated values, and curves are B-spline curve fits.

Tables (1)

Tables Icon

Table 1 Photonic Crystal Defect Slab Waveguides Considered in the Calculations

Metrics