Abstract

A new configuration is proposed for continuously transforming aspect ratios of field-intensity distributions in optical fibers. The field aspect ratio varies in proportion to the angle between the principal axes of two cascaded graded-index oval-core fibers. The highest aspect-ratio conversion is obtained at an angle of 90°. The conversion effect is numerically and experimentally confirmed, showing that a circular field is successfully transformed into an elliptical one with an aspect ratio as high as 9 at a wavelength of 0.98 µm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, J. Lightwave Technol. 8, 1313 (1990).
    [CrossRef]
  2. A. Ogura, K. Shiraishi, and H. Kato, in Optical Fiber Communications Postconference Digest, Vol. 54 of 2001 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), paper ThC5.
  3. R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
    [CrossRef]
  4. A. Ogura and K. Shiraishi, J. Lightwave Technol. 19, 49 (2001).
    [CrossRef]
  5. M. D. Feit and J. A. Fleck, Jr., Appl. Opt. 17, 3990 (1978).
    [CrossRef] [PubMed]
  6. W. Huang and C. Xu, J. Quantum Electron. 29, 2639 (1993).
    [CrossRef]
  7. A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, IEEE Photon. Technol. Lett. 13, 1191 (2001).
    [CrossRef]

2001 (2)

A. Ogura and K. Shiraishi, J. Lightwave Technol. 19, 49 (2001).
[CrossRef]

A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, IEEE Photon. Technol. Lett. 13, 1191 (2001).
[CrossRef]

1999 (1)

R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
[CrossRef]

1993 (1)

W. Huang and C. Xu, J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

1990 (1)

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, J. Lightwave Technol. 8, 1313 (1990).
[CrossRef]

1978 (1)

Bour, D. P.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, J. Lightwave Technol. 8, 1313 (1990).
[CrossRef]

Chaim, N. B.

R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
[CrossRef]

Curtis, L.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, J. Lightwave Technol. 8, 1313 (1990).
[CrossRef]

Feit, M. D.

Fleck, Jr., J. A.

Huang, W.

W. Huang and C. Xu, J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

Kato, H.

A. Ogura, K. Shiraishi, and H. Kato, in Optical Fiber Communications Postconference Digest, Vol. 54 of 2001 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), paper ThC5.

Kuchiki, S.

A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, IEEE Photon. Technol. Lett. 13, 1191 (2001).
[CrossRef]

Lammert, R.

R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
[CrossRef]

Newkirk, N. A.

R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
[CrossRef]

Ogura, A.

A. Ogura and K. Shiraishi, J. Lightwave Technol. 19, 49 (2001).
[CrossRef]

A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, IEEE Photon. Technol. Lett. 13, 1191 (2001).
[CrossRef]

A. Ogura, K. Shiraishi, and H. Kato, in Optical Fiber Communications Postconference Digest, Vol. 54 of 2001 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), paper ThC5.

Ohta, K.

A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, IEEE Photon. Technol. Lett. 13, 1191 (2001).
[CrossRef]

Oishi, I.

A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, IEEE Photon. Technol. Lett. 13, 1191 (2001).
[CrossRef]

Osowski, M. L.

R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
[CrossRef]

Qi, H.

R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
[CrossRef]

Shah, V. S.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, J. Lightwave Technol. 8, 1313 (1990).
[CrossRef]

Shiraishi, K.

A. Ogura and K. Shiraishi, J. Lightwave Technol. 19, 49 (2001).
[CrossRef]

A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, IEEE Photon. Technol. Lett. 13, 1191 (2001).
[CrossRef]

A. Ogura, K. Shiraishi, and H. Kato, in Optical Fiber Communications Postconference Digest, Vol. 54 of 2001 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), paper ThC5.

Ungar, J. E.

R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
[CrossRef]

Vodhanel, R. S.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, J. Lightwave Technol. 8, 1313 (1990).
[CrossRef]

Xu, C.

W. Huang and C. Xu, J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

Young, W. C.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, J. Lightwave Technol. 8, 1313 (1990).
[CrossRef]

2001 OSA Trends in Optics and Photonics (1)

A. Ogura, K. Shiraishi, and H. Kato, in Optical Fiber Communications Postconference Digest, Vol. 54 of 2001 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), paper ThC5.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, IEEE Photon. Technol. Lett. 13, 1191 (2001).
[CrossRef]

J. Quantum Electron. (1)

W. Huang and C. Xu, J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

J. Lightwave Technol. (2)

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, J. Lightwave Technol. 8, 1313 (1990).
[CrossRef]

A. Ogura and K. Shiraishi, J. Lightwave Technol. 19, 49 (2001).
[CrossRef]

Photon. Technol. Lett. (1)

R. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, N. A. Newkirk, and N. B. Chaim, Photon. Technol. Lett. 11, 1099 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cascaded GIO fiber configuration.

Fig. 2
Fig. 2

Change in the x- and y-directional spot radii as a function of the propagation distance obtained with the BPM.

Fig. 3
Fig. 3

Cross sections of (a) GIO1 and (b) GIO2.

Fig. 4
Fig. 4

Measured and calculated field intensity profiles at the output end of GIO2 for different orientation angles.

Fig. 5
Fig. 5

Measured and calculated spot radii as a function of the core orientation angle.

Fig. 6
Fig. 6

Measured polarization characteristics of the GIO fiber.

Tables (1)

Tables Icon

Table 1 Structural Parameters of GIO Fibers.

Metrics