Abstract

We report a robust and reliable platform source for visible-wavelength multiphoton microscopy that is based on nonlinear optical methods. We demonstrate a synchronously pumped, singly resonant optical parametric oscillator with simultaneous intracavity third-order quasi-phase matching in a single crystal that generates continuously tunable, visible, and femtosecond-pulsed radiation. The application of the system is demonstrated by two-photon laser-scanning fluorescence microscopy of rabbit cardiac myocytes loaded with the fluorescent Ca2+ indicator fura-2.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription