Abstract

We report a robust and reliable platform source for visible-wavelength multiphoton microscopy that is based on nonlinear optical methods. We demonstrate a synchronously pumped, singly resonant optical parametric oscillator with simultaneous intracavity third-order quasi-phase matching in a single crystal that generates continuously tunable, visible, and femtosecond-pulsed radiation. The application of the system is demonstrated by two-photon laser-scanning fluorescence microscopy of rabbit cardiac myocytes loaded with the fluorescent Ca2+ indicator fura-2.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. K. Svoboda, W. Denk, W. H. Knox, and S. Tsuda, Opt. Lett. 21, 1411 (1996).
    [CrossRef] [PubMed]
  3. P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
    [CrossRef]
  4. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA 93, 10763 (1996).
    [CrossRef]
  5. A. M. Gurney and H. A. Lester, Physiol. Rev. 67, 583 (1987).
    [PubMed]
  6. E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
    [CrossRef]
  7. X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
    [CrossRef]
  8. C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, and W. Sibbett, J. Opt. Soc. Am. B 15, 694 (1998).
    [CrossRef]
  9. C. M. Loughrey, K. E. MacEachern, P. Neary, and G. L. Smith, J. Physiol. 543, 859 (2002).
    [CrossRef] [PubMed]

2002 (2)

X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
[CrossRef]

C. M. Loughrey, K. E. MacEachern, P. Neary, and G. L. Smith, J. Physiol. 543, 859 (2002).
[CrossRef] [PubMed]

1998 (1)

1996 (2)

K. Svoboda, W. Denk, W. H. Knox, and S. Tsuda, Opt. Lett. 21, 1411 (1996).
[CrossRef] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA 93, 10763 (1996).
[CrossRef]

1992 (1)

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

1991 (1)

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

1990 (1)

W. Denk, J. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1987 (1)

A. M. Gurney and H. A. Lester, Physiol. Rev. 67, 583 (1987).
[PubMed]

Amos, W. B.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Bortz, M. L.

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

Curley, P. F.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Denk, W.

Ebrahimzadeh, M.

Fejer, M. M.

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

Ferguson, A. I.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Giessen, H.

X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
[CrossRef]

Gurney, A. M.

A. M. Gurney and H. A. Lester, Physiol. Rev. 67, 583 (1987).
[PubMed]

Hebling, J.

X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
[CrossRef]

Hertz, H. M.

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

Knox, W. H.

Kuhl, J.

X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
[CrossRef]

Lester, H. A.

A. M. Gurney and H. A. Lester, Physiol. Rev. 67, 583 (1987).
[PubMed]

Lim, E. J.

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

Loughrey, C. M.

C. M. Loughrey, K. E. MacEachern, P. Neary, and G. L. Smith, J. Physiol. 543, 859 (2002).
[CrossRef] [PubMed]

MacEachern, K. E.

C. M. Loughrey, K. E. MacEachern, P. Neary, and G. L. Smith, J. Physiol. 543, 859 (2002).
[CrossRef] [PubMed]

McGowan, C.

Neary, P.

C. M. Loughrey, K. E. MacEachern, P. Neary, and G. L. Smith, J. Physiol. 543, 859 (2002).
[CrossRef] [PubMed]

Palfalvi, L.

X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
[CrossRef]

Penman, Z. E.

Reid, D. T.

Ruhle, W. W.

X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
[CrossRef]

Shear, J. B.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA 93, 10763 (1996).
[CrossRef]

Sibbett, W.

Smith, G. L.

C. M. Loughrey, K. E. MacEachern, P. Neary, and G. L. Smith, J. Physiol. 543, 859 (2002).
[CrossRef] [PubMed]

Strickler, J.

W. Denk, J. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Svoboda, K.

Tsuda, S.

Webb, W. W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA 93, 10763 (1996).
[CrossRef]

W. Denk, J. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

White, J. G.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Williams, R. M.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA 93, 10763 (1996).
[CrossRef]

Xu, C.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA 93, 10763 (1996).
[CrossRef]

Zhang, X.

X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
[CrossRef]

Zipfel, W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA 93, 10763 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

X. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, L. Palfalvi, and H. Giessen, J. Opt. Soc. Am. B 19, 2479 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Physiol. (1)

C. M. Loughrey, K. E. MacEachern, P. Neary, and G. L. Smith, J. Physiol. 543, 859 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Physiol. Rev. (1)

A. M. Gurney and H. A. Lester, Physiol. Rev. 67, 583 (1987).
[PubMed]

Proc. Natl. Acad. Sci. USA (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA 93, 10763 (1996).
[CrossRef]

Science (1)

W. Denk, J. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the pump source, mode-matching optics, and PPLN OPO. M1 and M2 are highly reflecting mirrors for λ=1047 nm at 45° incidence. Lens f3 collimates the output from mirror M4. M3, M4, M5, and M6 are the OPO cavity mirrors designed for singly resonant operation between λ=1460 and 1600 nm. FI, Faraday isolator; SWP, short-wave-pass filter.

Fig. 2
Fig. 2

(a) Spectrum of λ=631 nm radiation (period length Λ=29.7 µm at 130 °C) measured with a Rees laser spectrum analyzer (±0.5-nm wavelength accuracy). (b) Autocorrelation trace of output at λ=631 nm, assuming a sech2 pulse shape.

Fig. 3
Fig. 3

(a) Two-photon fluorescence image, comprising 512×512 pixels (scale bar, 50 µm) of rabbit ventricular myocytes containing fura-2 under excitation at λ=639 nm. The rectangular-shaped cells in the center of the field represent normal quiescent cardiomyocytes. (b) Mean (± scanning electron microscopy) fluorescence signal intensity from control (unloaded) and fura-2-loaded myocytes from five samples (excitation at λ=639 nm). (c) Double-logarithmic plot of average fluorescence intensity as a function of average amber–red laser power for fura-2 in myocytes from n=5 samples (excitation λ=639 nm). Error bars indicate estimated error of ±5%.

Metrics