Abstract

The possibilities offered by type II intracavity second-harmonic generation for all-optical parallel processing of images are investigated. By injecting an image in a linearly polarized pump beam and a homogeneous field with orthogonal polarization, we obtain, according to the value of the latter, either frequency and polarization transfer or contrast enhancement and contour recognition. Noise-filtering effects are also predicted.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Devaux and E. Lantz, Opt. Commun. 114, 295 (1995).
    [CrossRef]
  2. M. Y. Shih, A. Shishido, and I. C. Khoo, Opt. Lett. 26, 1140 (2001).
    [CrossRef]
  3. J. Khoury, C. L. Woods, and M. Cronin-Golomb, Opt. Lett. 16, 747 (1991).
    [CrossRef] [PubMed]
  4. J. Khoury, J. Fu, M. Cronin-Golomb, and C. Woods, J. Opt. Soc. Am. B 11, 1960 (1994).
    [CrossRef]
  5. U. Peschel, C. Etrich, and F. Lederer, Opt. Lett. 23, 500 (1998).
    [CrossRef]
  6. U. Peschel, C. Etrich, and F. Lederer, Phys. Rev. E 58, 4005 (1998).
    [CrossRef]
  7. S. Longhi, Opt. Lett. 23, 346 (1998).
    [CrossRef]
  8. S. Longhi, Phys. Rev. A 59, 4021 (1999).
    [CrossRef]
  9. For homogeneous pumps the pumping amplitudes can be taken as real fields without loss of generality.
  10. Z. Y. Ou, Phys. Rev. A 49, 4902 (1994).
    [CrossRef] [PubMed]
  11. M. Bache, P. Lodahl, A. V. Mamaev, M. Marcus, and M. Saffman, Phys. Rev. A 65, 033811 (2002).
    [CrossRef]

2002 (1)

M. Bache, P. Lodahl, A. V. Mamaev, M. Marcus, and M. Saffman, Phys. Rev. A 65, 033811 (2002).
[CrossRef]

2001 (1)

1999 (1)

S. Longhi, Phys. Rev. A 59, 4021 (1999).
[CrossRef]

1998 (3)

1995 (1)

F. Devaux and E. Lantz, Opt. Commun. 114, 295 (1995).
[CrossRef]

1994 (2)

1991 (1)

Bache, M.

M. Bache, P. Lodahl, A. V. Mamaev, M. Marcus, and M. Saffman, Phys. Rev. A 65, 033811 (2002).
[CrossRef]

Cronin-Golomb, M.

Devaux, F.

F. Devaux and E. Lantz, Opt. Commun. 114, 295 (1995).
[CrossRef]

Etrich, C.

U. Peschel, C. Etrich, and F. Lederer, Opt. Lett. 23, 500 (1998).
[CrossRef]

U. Peschel, C. Etrich, and F. Lederer, Phys. Rev. E 58, 4005 (1998).
[CrossRef]

Fu, J.

Khoo, I. C.

Khoury, J.

Lantz, E.

F. Devaux and E. Lantz, Opt. Commun. 114, 295 (1995).
[CrossRef]

Lederer, F.

U. Peschel, C. Etrich, and F. Lederer, Phys. Rev. E 58, 4005 (1998).
[CrossRef]

U. Peschel, C. Etrich, and F. Lederer, Opt. Lett. 23, 500 (1998).
[CrossRef]

Lodahl, P.

M. Bache, P. Lodahl, A. V. Mamaev, M. Marcus, and M. Saffman, Phys. Rev. A 65, 033811 (2002).
[CrossRef]

Longhi, S.

S. Longhi, Phys. Rev. A 59, 4021 (1999).
[CrossRef]

S. Longhi, Opt. Lett. 23, 346 (1998).
[CrossRef]

Mamaev, A. V.

M. Bache, P. Lodahl, A. V. Mamaev, M. Marcus, and M. Saffman, Phys. Rev. A 65, 033811 (2002).
[CrossRef]

Marcus, M.

M. Bache, P. Lodahl, A. V. Mamaev, M. Marcus, and M. Saffman, Phys. Rev. A 65, 033811 (2002).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou, Phys. Rev. A 49, 4902 (1994).
[CrossRef] [PubMed]

Peschel, U.

U. Peschel, C. Etrich, and F. Lederer, Phys. Rev. E 58, 4005 (1998).
[CrossRef]

U. Peschel, C. Etrich, and F. Lederer, Opt. Lett. 23, 500 (1998).
[CrossRef]

Saffman, M.

M. Bache, P. Lodahl, A. V. Mamaev, M. Marcus, and M. Saffman, Phys. Rev. A 65, 033811 (2002).
[CrossRef]

Shih, M. Y.

Shishido, A.

Woods, C.

Woods, C. L.

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

F. Devaux and E. Lantz, Opt. Commun. 114, 295 (1995).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (3)

S. Longhi, Phys. Rev. A 59, 4021 (1999).
[CrossRef]

Z. Y. Ou, Phys. Rev. A 49, 4902 (1994).
[CrossRef] [PubMed]

M. Bache, P. Lodahl, A. V. Mamaev, M. Marcus, and M. Saffman, Phys. Rev. A 65, 033811 (2002).
[CrossRef]

Phys. Rev. E (1)

U. Peschel, C. Etrich, and F. Lederer, Phys. Rev. E 58, 4005 (1998).
[CrossRef]

Other (1)

For homogeneous pumps the pumping amplitudes can be taken as real fields without loss of generality.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SHG for asymmetric pumping. Steady-state intracavity field amplitudes as a function of Ex for Ey=5. Δ0=0, Δx=Δy=1. The symbols indicate the regions of the curves that are unstable, as predicted by a linear stability analysis. The vertical dashed line corresponds to the symmetric pumping Ex=Ey.

Fig. 2
Fig. 2

(a) Input image (one-dimensional case) together with the homogeneous pump Ey (dotted line). (b) Axx. (c) Bx (frequency transfer).

Fig. 3
Fig. 3

Frequency transfer (two-dimensional case). Upper panels, spatial distribution of (from the left to the right) pump field Ex (input image), Ax, Ay, and B, after the transients have disappeared. Lower panels, transverse cut of the upper panels along the horizontal dashed line. Dotted line in left panel, Ey=5.

Fig. 4
Fig. 4

Geometrical construction used to predict the behavior of the system to a given input signal. The case considered here corresponds to contrast enhancement and contour recognition.

Fig. 5
Fig. 5

(a) Input signal Exx (one-dimensional case) and Ey=6 (dotted line). (b) Axx (contrast enhancement). (c) Bx (contour recognition).

Fig. 6
Fig. 6

Same as Fig. 5 but with Ey=5.

Fig. 7
Fig. 7

Contrast enhancement and contour recognition in the noiseless case.

Fig. 8
Fig. 8

Frequency transfer of a two-dimensional optical image in the noisy case and noise filtering.

Fig. 9
Fig. 9

Spatially oscillating pump with a position-dependent wave number. Ex,mid=4, δEx=1, xm=80. (a) Input signal. (b) Effect of diffraction alone. (c) Interplay of diffraction and nonlinearity.

Fig. 10
Fig. 10

Contrast enhancement and noise filtering of a noisy image.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

tB=-1+iΔ0B+i22B+iAxAy,
tAx=-1+iΔAx+i2Ax+iAy*B+Ex,
tAy=-1+iΔAy+i2Ay+iAx*B+Ey,
Eas2=21+Δ021/21+Δ23/2+21+Δ21-ΔΔ0.
Exx=Ex,0+δEx coskmx22xm,
tAx=-1+iΔAx+i2Ax+Ex,

Metrics