Abstract

We describe a novel optomechanical device that produces strong reflectance and polarization modulation of incident light. The structure is based on a suspended nanomechanical grating with lateral deformability, and rigorous coupled-wave analysis has been used to fully model the optical properties of the device. The grating consists of two interdigitated gratings that may be moved with respect to each other with an applied force. The structures proposed here are designed to be readily manufacturable with device processing developed for surface-micromachined microelectromechanical systems and with known microelectromechanical systems materials, such as silicon, silicon nitride, and amorphous diamond. As the spacing of the grating is changed, an anomalous diffraction effect is observed, a Wood’s type anomaly in which there exists a resonance in propagating leaky modes within the grating, resulting in a dramatic change in the reflectance characteristics for slight changes in the grating. One of the unique features of this structure is that a reflected optical signal can be used to detect subangstrom in-plane motion of structures greater than 10 nm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, Opt. Lett. 17, 688 (1992).
    [CrossRef] [PubMed]
  2. F. S. A. Sandejas, R. B. Apte, W. C. Banyai, and D. M. Bloom, in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (Transducer Research Foundation, Cleveland Heights, Ohio, 1994), p. 1.
  3. M. G. Moharam, E. B. Grann, D. A. Pommett, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  4. H. Haidner, J. T. Sheridan, J. Schwider, and N. Streibl, Opt. Commun. 98, 5 (1993).
    [CrossRef]
  5. M. G. Moharam, E. B. Grann, D. A. Pommett, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  6. T. Peter, R. Brauer, and O. Bryngdahl, Opt. Commun. 139, 177 (1997).
    [CrossRef]
  7. T. Tamir and S. Zhang, J. Opt. Soc. Am. A 14, 1607 (1997).
    [CrossRef]
  8. A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).
    [CrossRef]
  9. C.-H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
    [CrossRef]
  10. R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
    [CrossRef]
  11. D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
    [CrossRef]
  12. D. W. Carr and H. G. Craighead, J. Vac. Sci. Technol. B 15, 2760 (1997).
    [CrossRef]

2002 (1)

R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
[CrossRef]

2001 (1)

C.-H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
[CrossRef]

1999 (1)

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
[CrossRef]

1997 (3)

D. W. Carr and H. G. Craighead, J. Vac. Sci. Technol. B 15, 2760 (1997).
[CrossRef]

T. Peter, R. Brauer, and O. Bryngdahl, Opt. Commun. 139, 177 (1997).
[CrossRef]

T. Tamir and S. Zhang, J. Opt. Soc. Am. A 14, 1607 (1997).
[CrossRef]

1995 (2)

1993 (1)

H. Haidner, J. T. Sheridan, J. Schwider, and N. Streibl, Opt. Commun. 98, 5 (1993).
[CrossRef]

1992 (1)

1965 (1)

Aklufi, M. E.

R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
[CrossRef]

Apte, R. B.

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, and D. M. Bloom, in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (Transducer Research Foundation, Cleveland Heights, Ohio, 1994), p. 1.

Banyai, W. C.

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, and D. M. Bloom, in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (Transducer Research Foundation, Cleveland Heights, Ohio, 1994), p. 1.

Bloom, D. M.

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, Opt. Lett. 17, 688 (1992).
[CrossRef] [PubMed]

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, and D. M. Bloom, in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (Transducer Research Foundation, Cleveland Heights, Ohio, 1994), p. 1.

Brauer, R.

T. Peter, R. Brauer, and O. Bryngdahl, Opt. Commun. 139, 177 (1997).
[CrossRef]

Bryngdahl, O.

T. Peter, R. Brauer, and O. Bryngdahl, Opt. Commun. 139, 177 (1997).
[CrossRef]

Carr, D. W.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
[CrossRef]

D. W. Carr and H. G. Craighead, J. Vac. Sci. Technol. B 15, 2760 (1997).
[CrossRef]

Craighead, H. G.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
[CrossRef]

D. W. Carr and H. G. Craighead, J. Vac. Sci. Technol. B 15, 2760 (1997).
[CrossRef]

Evoy, S.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Haidner, H.

H. Haidner, J. T. Sheridan, J. Schwider, and N. Streibl, Opt. Commun. 98, 5 (1993).
[CrossRef]

Hessel, A.

Kenny, T. W.

C.-H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
[CrossRef]

Liu, C.-H.

C.-H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
[CrossRef]

Moharam, M. G.

Oliner, A. A.

Parpia, J. M.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
[CrossRef]

Peter, T.

T. Peter, R. Brauer, and O. Bryngdahl, Opt. Commun. 139, 177 (1997).
[CrossRef]

Pommett, D. A.

Sandejas, F. S. A.

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, Opt. Lett. 17, 688 (1992).
[CrossRef] [PubMed]

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, and D. M. Bloom, in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (Transducer Research Foundation, Cleveland Heights, Ohio, 1994), p. 1.

Schwider, J.

H. Haidner, J. T. Sheridan, J. Schwider, and N. Streibl, Opt. Commun. 98, 5 (1993).
[CrossRef]

Sekaric, L.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
[CrossRef]

Sheridan, J. T.

H. Haidner, J. T. Sheridan, J. Schwider, and N. Streibl, Opt. Commun. 98, 5 (1993).
[CrossRef]

Solgaard, O.

Streibl, N.

H. Haidner, J. T. Sheridan, J. Schwider, and N. Streibl, Opt. Commun. 98, 5 (1993).
[CrossRef]

Tamir, T.

Waters, R. L.

R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
[CrossRef]

Zhang, S.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
[CrossRef]

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999).
[CrossRef]

J. Microelectromech. Syst. (1)

C.-H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Vac. Sci. Technol. B (1)

D. W. Carr and H. G. Craighead, J. Vac. Sci. Technol. B 15, 2760 (1997).
[CrossRef]

Opt. Commun. (2)

H. Haidner, J. T. Sheridan, J. Schwider, and N. Streibl, Opt. Commun. 98, 5 (1993).
[CrossRef]

T. Peter, R. Brauer, and O. Bryngdahl, Opt. Commun. 139, 177 (1997).
[CrossRef]

Opt. Lett. (1)

Other (1)

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, and D. M. Bloom, in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (Transducer Research Foundation, Cleveland Heights, Ohio, 1994), p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cross section of the laterally deformable grating device, with the relevant parameters shown. For all the calculations herein Λ=0.6 µm, d1=0.33 µm, d2=2.1 µm, d3=0.08 µm. The index of refraction of the grating layer is n=2.0-i0.02, the antireflection layer is n=2.0, and the silicon substrate is n=3.86-i0.02. s is the center-to-center distance of the nearest-neighbor pairs and serves as the x axis for the reflectance plots in Fig. 2. w is the beam width of the individual grating elements.

Fig. 2
Fig. 2

(a) TE mode reflectance as the grating spacing (s) is altered for three different beam widths (w). The period and thicknesses are all held constant at the values given in the caption to Fig. 1. (b) TM mode reflectance for the same geometries as in (a). We see that the 50-nm-beam grating serves as a very good polarizing beam splitter for certain spacings.

Fig. 3
Fig. 3

Contour plots of the field intensity as the lateral spacing is changed. The gray scale is logarithmic in the intensity and covers 7 orders of magnitude. The beam width is 50 nm. (a) Spacing of 50 nm, so the gratings are in contact. (b) Spacing of 160 nm. (c) Spacing of 175 nm. (d) Spacing of 210 nm. The extent of the x axis is 1.8 µm, and the y axis is 5.4 µm.

Metrics