Abstract

We demonstrate electro-optic frequency shifting of 1.55µm optical pulses by as much as 86 GHz in a polymer traveling-wave phase modulator. The optical pulses were modulated with the linear region of quasi-sinusoidal microwave pulses. In the implemented configuration the electro-optic frequency shifter does not require synchronization with the source of the optical pulses, making it transparent to the optical-pulse repetition rate and increasing its utility. Electro-optic frequency conversion has a number of advantages compared with other methods of all-optical frequency conversion, including no need for a second optical source, high conversion efficiency, and simple control of the output frequency.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Y. Poberezhskiy and H. R. Fetterman, Opt. Lett. 27, 427 (2002).
    [CrossRef]
  2. L. M. Johnson and C. H. Cox, J. Lightwave Technol. 6, 109 (1988).
    [CrossRef]
  3. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, San Diego, Calif., 1998), pp. 160–166.
  4. M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. QE-4, 477 (1968).
    [CrossRef]
  5. M. L. Raziat, G. F. Virshup, and J. N. Eckstein, IEEE Photon. Technol. Lett. 5, 1002 (1993).
    [CrossRef]
  6. D. A. Farias and J. N. Eckstein, IEEE J. Quantum Electron. 39, 358 (2003).
    [CrossRef]
  7. S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
    [CrossRef]

2003 (2)

D. A. Farias and J. N. Eckstein, IEEE J. Quantum Electron. 39, 358 (2003).
[CrossRef]

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

2002 (1)

1993 (1)

M. L. Raziat, G. F. Virshup, and J. N. Eckstein, IEEE Photon. Technol. Lett. 5, 1002 (1993).
[CrossRef]

1988 (1)

L. M. Johnson and C. H. Cox, J. Lightwave Technol. 6, 109 (1988).
[CrossRef]

1968 (1)

M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. QE-4, 477 (1968).
[CrossRef]

Chang, D. H.

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

Cox, C. H.

L. M. Johnson and C. H. Cox, J. Lightwave Technol. 6, 109 (1988).
[CrossRef]

Duguay, M. A.

M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. QE-4, 477 (1968).
[CrossRef]

Eckstein, J. N.

D. A. Farias and J. N. Eckstein, IEEE J. Quantum Electron. 39, 358 (2003).
[CrossRef]

M. L. Raziat, G. F. Virshup, and J. N. Eckstein, IEEE Photon. Technol. Lett. 5, 1002 (1993).
[CrossRef]

Farias, D. A.

D. A. Farias and J. N. Eckstein, IEEE J. Quantum Electron. 39, 358 (2003).
[CrossRef]

Fetterman, H. R.

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

I. Y. Poberezhskiy and H. R. Fetterman, Opt. Lett. 27, 427 (2002).
[CrossRef]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. QE-4, 477 (1968).
[CrossRef]

Johnson, L. M.

L. M. Johnson and C. H. Cox, J. Lightwave Technol. 6, 109 (1988).
[CrossRef]

Kim, S.-K.

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

Poberezhskiy, I. Y.

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, San Diego, Calif., 1998), pp. 160–166.

Raziat, M. L.

M. L. Raziat, G. F. Virshup, and J. N. Eckstein, IEEE Photon. Technol. Lett. 5, 1002 (1993).
[CrossRef]

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, San Diego, Calif., 1998), pp. 160–166.

Steier, W. H.

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

Virshup, G. F.

M. L. Raziat, G. F. Virshup, and J. N. Eckstein, IEEE Photon. Technol. Lett. 5, 1002 (1993).
[CrossRef]

Wang, C.

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

Zhang, C.

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

Zhang, H.

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. QE-4, 477 (1968).
[CrossRef]

D. A. Farias and J. N. Eckstein, IEEE J. Quantum Electron. 39, 358 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. L. Raziat, G. F. Virshup, and J. N. Eckstein, IEEE Photon. Technol. Lett. 5, 1002 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, andH. R. Fetterman, IEEE Photon. Technol. Lett. 15, 218 (2003).
[CrossRef]

J. Lightwave Technol. (1)

L. M. Johnson and C. H. Cox, J. Lightwave Technol. 6, 109 (1988).
[CrossRef]

Opt. Lett. (1)

Other (1)

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, San Diego, Calif., 1998), pp. 160–166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual operation of the EO frequency shifter in the upshifting configuration. The microwave frequency has to be an integer multiple of the optical-pulse repetition rate.

Fig. 2
Fig. 2

Block diagram of the experimental setup. The solid lines represent optical signals, and the dashed lines represent electrical signals. The modulating microwave pulses are generated by the optical pulses.

Fig. 3
Fig. 3

Temporal shape of the modulating microwave pulse. The dashed ellipse shows the part that downshifts the optical pulse; the solid ellipse shows the part that upshifts the optical pulse.

Fig. 4
Fig. 4

Result of frequency conversion. Initial spectrum (solid curve), downshifted spectrum (dotted curve), and upshifted spectrum (dashed curve) are shown.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

φt=ωt+1no-nmrno32dtt+ΔtVτdτ,
φt=ωt+ΔnoL2csinωmΔt/2ωmΔt/2×sinωmt+ωmΔt/2.
ωt=ω1+ωmΔnoL2csinωmΔt/2ωmΔt/2×cosωmt+Δt/2.
Δω=ωωmΔnoL2csinωmΔt/2ωmΔt/2.

Metrics