Abstract

We experimentally demonstrate for what is believed to be the first time that a dispersion-shifted fiber can be used to electro-optically induce a soliton Y-branch structure in a photorefractive centrosymmetric paraelectric crystal (potassium lithium tantalate niobate). The application of a nonstaionary external bias field enables us to stabilize the spatially partially coherent behavior of the optical beam at the fiber output. Furthermore, we show the switching capabilities of this soliton-based device in the optical communication field guiding a probe beam at a nonphotorefractive wavelength (1557 nm).

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription