Abstract

We experimentally demonstrate for what is believed to be the first time that a dispersion-shifted fiber can be used to electro-optically induce a soliton Y-branch structure in a photorefractive centrosymmetric paraelectric crystal (potassium lithium tantalate niobate). The application of a nonstaionary external bias field enables us to stabilize the spatially partially coherent behavior of the optical beam at the fiber output. Furthermore, we show the switching capabilities of this soliton-based device in the optical communication field guiding a probe beam at a nonphotorefractive wavelength (1557 nm).

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mitchell and M. Segev, Nature 387, 880 (1997).
    [CrossRef]
  2. S. Trillo and W. E. Torruellas, Spatial Solitons (Springer, New York, 2002), pp. 61–85.
  3. E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
    [CrossRef]
  4. E. DelRe, M. Tamburini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
    [CrossRef]
  5. M. Segev, C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).
    [CrossRef] [PubMed]
  6. G. M. Tosi-Beleffi, M. Presi, and E. DelRe, Opt. Lett. 25, 1538 (2000).
    [CrossRef]
  7. A. J. Agranat, R. Hofmeister, and A. Yariv, Opt. Lett. 17, 713 (1992).
    [CrossRef] [PubMed]
  8. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, 1997), pp. 76–119.
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001), pp. 1–23.
  10. E. DelRe, M. Tamburrini, and A. J. Agranat, Opt. Lett. 13, 963 (2000).
    [CrossRef]

2000

E. DelRe, M. Tamburrini, and A. J. Agranat, Opt. Lett. 13, 963 (2000).
[CrossRef]

G. M. Tosi-Beleffi, M. Presi, and E. DelRe, Opt. Lett. 25, 1538 (2000).
[CrossRef]

1998

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
[CrossRef]

E. DelRe, M. Tamburini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

1997

M. Mitchell and M. Segev, Nature 387, 880 (1997).
[CrossRef]

1994

M. Segev, C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

1992

Agranat, A. J.

E. DelRe, M. Tamburrini, and A. J. Agranat, Opt. Lett. 13, 963 (2000).
[CrossRef]

E. DelRe, M. Tamburini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
[CrossRef]

A. J. Agranat, R. Hofmeister, and A. Yariv, Opt. Lett. 17, 713 (1992).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001), pp. 1–23.

Crosignani, B.

DelRe, E.

E. DelRe, M. Tamburrini, and A. J. Agranat, Opt. Lett. 13, 963 (2000).
[CrossRef]

G. M. Tosi-Beleffi, M. Presi, and E. DelRe, Opt. Lett. 25, 1538 (2000).
[CrossRef]

E. DelRe, M. Tamburini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
[CrossRef]

Di Porto, P.

M. Segev, C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

Hofmeister, R.

Mitchell, M.

Presi, M.

Rafaeli, E.

E. DelRe, M. Tamburini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

Refaeli, E.

Segev, M.

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
[CrossRef]

E. DelRe, M. Tamburini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

M. Mitchell and M. Segev, Nature 387, 880 (1997).
[CrossRef]

M. Segev, C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

Tamburini, M.

E. DelRe, M. Tamburini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

Tamburrini, M.

Torruellas, W. E.

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer, New York, 2002), pp. 61–85.

Tosi-Beleffi, G. M.

Trillo, S.

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer, New York, 2002), pp. 61–85.

Valley, C.

M. Segev, C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

Yariv, A.

M. Segev, C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

A. J. Agranat, R. Hofmeister, and A. Yariv, Opt. Lett. 17, 713 (1992).
[CrossRef] [PubMed]

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, 1997), pp. 76–119.

Appl. Phys. Lett.

E. DelRe, M. Tamburini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

Nature

M. Mitchell and M. Segev, Nature 387, 880 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

M. Segev, C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

Other

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, 1997), pp. 76–119.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001), pp. 1–23.

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer, New York, 2002), pp. 61–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: The laser beam arrives at the crystal face input after passing through a mirror (S) variable attenuator (A), a lens (L), a fiber holder (C), a coupler (X), and a DS fiber (F). Other abbreviations defined in text.

Fig. 2
Fig. 2

Nonstable excitation of a needle soliton: (a) intensity input 10µm FWHM distribution, (b) diffracted intensity output distribution after 6.4-mm linear propagation with V=0 V, (c) self-trapping after 10 min, (d) subsequent fragmentation after 20 min induced by stationary voltage V=380 V.

Fig. 3
Fig. 3

Stable two-soliton-state configuration: (a) intensity input 10µm FWHM distribution, (b) diffracted intensity output distribution after 6.4-mm linear propagation with V=0 V, (c), (d) two self-trapped oscillating states induced by square-wave voltage with peak-to-peak amplitude VSQ=760 V and period TSQ=0.1 s.

Fig. 4
Fig. 4

Nonstable state as a result of nonsymmetrical light distribution: (a) intensity input distribution, (b) intensity output distribution, (c) each side [e and f in (b)] trying to form a stable bifurcation, (d) double antiguiding pattern obtained at V=0 V.

Fig. 5
Fig. 5

Guiding of a probe beam at a nonphotorefractive wavelength: (a) diffracted output and (b), (c) alternate states at 514 nm; (d) diffracted output and (e), (f) alternate states at 1557 nm. The infrared signal uses the previously written guides to propagate along the crystal.

Metrics