Abstract

We propose the use of spectral phase conjugation to compensate for dispersion of all orders, self-phase modulation, and self-steepening of an optical pulse in a fiber. Although this method cannot compensate for loss and intrapulse Raman scattering, it is superior to the previously suggested midway temporal phase conjugation method if high-order dispersion is a main source of distortion. The reshaping performance of our proposed scheme and a combined temporal and spectral phase conjugation scheme in the presence of uncompensated effects is studied numerically.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, D. Fekete, and D. M. Pepper, Opt. Lett. 4, 52 (1979).
    [CrossRef]
  2. R. A. Fisher, B. R. Suydam, and D. Yevick, Opt. Lett. 8, 611 (1983).
    [CrossRef] [PubMed]
  3. S. Chi and S. F. Wen, Opt. Lett. 19, 1705 (1994).
    [CrossRef] [PubMed]
  4. A. M. Weiner, D. E. Leaird, D. H. Reitze, and G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
    [CrossRef]
  5. C. Chang, H. P. Sardesai, and A. M. Weiner, Opt. Lett. 23, 283 (1998).
    [CrossRef]
  6. F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, Opt. Lett. 26, 938 (2001).
    [CrossRef]
  7. M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. (to be published).
  8. J. Pina, B. Abueva, and G. Goedde, Opt. Commun. 176, 397 (2000).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  10. D. A. B. Miller, Opt. Lett. 5, 300 (1980).
    [CrossRef] [PubMed]
  11. D. Marom, D. Panasenko, R. Rokitski, P. Sun, and Y. Fainman, Opt. Lett. 25, 132 (2000).
    [CrossRef]
  12. W. Forysiak and N. J. Doran, Electron. Lett. 30, 154 (1994).
    [CrossRef]

2001 (1)

2000 (2)

1998 (1)

1994 (2)

W. Forysiak and N. J. Doran, Electron. Lett. 30, 154 (1994).
[CrossRef]

S. Chi and S. F. Wen, Opt. Lett. 19, 1705 (1994).
[CrossRef] [PubMed]

1992 (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, and G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

1983 (1)

1980 (1)

1979 (1)

Abueva, B.

J. Pina, B. Abueva, and G. Goedde, Opt. Commun. 176, 397 (2000).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Chang, C.

Chi, S.

Doran, N. J.

W. Forysiak and N. J. Doran, Electron. Lett. 30, 154 (1994).
[CrossRef]

Fainman, Y.

Fekete, D.

Fisher, R. A.

Forysiak, W.

W. Forysiak and N. J. Doran, Electron. Lett. 30, 154 (1994).
[CrossRef]

Goedde, G.

J. Pina, B. Abueva, and G. Goedde, Opt. Commun. 176, 397 (2000).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Marom, D.

Miller, D. A. B.

Moores, M. D.

Omenetto, F. G.

F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, Opt. Lett. 26, 938 (2001).
[CrossRef]

M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. (to be published).

Paek, G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Panasenko, D.

Pepper, D. M.

Pina, J.

J. Pina, B. Abueva, and G. Goedde, Opt. Commun. 176, 397 (2000).
[CrossRef]

Psaltis, D.

M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. (to be published).

Reitze, D. H.

F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, Opt. Lett. 26, 938 (2001).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Rokitski, R.

Sardesai, H. P.

Sun, P.

Suydam, B. R.

Taylor, A. J.

Tsang, M.

M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. (to be published).

Weiner, A. M.

C. Chang, H. P. Sardesai, and A. M. Weiner, Opt. Lett. 23, 283 (1998).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Wen, S. F.

Yariv, A.

Yevick, D.

Electron. Lett. (1)

W. Forysiak and N. J. Doran, Electron. Lett. 30, 154 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, and G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Opt. Commun. (1)

J. Pina, B. Abueva, and G. Goedde, Opt. Commun. 176, 397 (2000).
[CrossRef]

Opt. Lett. (8)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematics of TPC and SPC.

Fig. 2
Fig. 2

Input and output pulses, with and without compensation schemes, when a 1.7-W 200-fs super-Gaussian pulse propagates for a total distance of 2 km.

Fig. 3
Fig. 3

Input and output pulses, with and without compensation schemes, when multiple 200-fs solitons propagate for a total distance of 1 km.

Tables (1)

Tables Icon

Table 1 Comparison of TPC and SPC in Terms of Propagation Effects That Can Be Compensated for by Each Scheme

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E˜*ω=-Atexp-jω0texpjωtdt*
=-A*-texp-jω0texpjωtdt,
Az,Tz=DˆT+NˆTAz,TAz,T,
DˆT=-α2+n=2jβnn!jTn,
NˆTA=jγA2+jω01ATA2A-TRA2T,
AL,T=expLDˆT+0LNˆTAz,Tdz×A0,T,
A0,T=exp-LDˆT-0LNˆTAz,Tdz×AL,T.
A*0,-T=exp-LDˆ-T*-0LNˆ-T*Az,-Tdz×A*L,-T.
Dˆ-T*=n=2-jβnn!-j-Tn
=n=2-jβnn!jTn=-DˆT.
Nˆ-T*Az,-T=-NˆTA*z,-T.
A*0,-T=expLDˆT+0LNˆTA*L-z,-Tdz×A*L,-T.
Lloss=loss length=1/α,
LD=dispersion length=T02/β2,
LD=thirdorder dispersion length=T03/β3,
LNL=nonlinear length=1/γP0,
LSS=selfsteepening length=ω0T0/γP0,
LR=Raman length=T0/TRγP0,
At=P0exp-12TT06,

Metrics