Abstract

A major obstacle in the race to develop two-photon fluorescence endoscopy is the use of complicated bulk optics to transmit an ultrashort-pulsed laser beam and return the emitted fluorescence signal. We describe an all-fiber two-photon fluorescence microendoscope based on a single-mode optical fiber coupler, a microprism, and a gradient-index rod lens. It is found that the new endoscope exhibits an axial resolution of 3.2 µm and is capable of imaging transverse cross sections of internal cylindrical structures as small as approximately 3.0 mm in diameter. This device demonstrates the potential for developing a real-time diagnostic tool for biomedical research without the need for surgical biopsy and may find applications in photodynamic therapy, microsurgery, and early cancer detection.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1999).
    [CrossRef]
  2. G. A. Wagnieres, W. M. Star, and B. C. Wilson, Photochem. Photobiol. 68, 603 (1998).
    [CrossRef]
  3. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  4. T. Dabbs and M. Glass, Appl. Opt. 31, 705 (1992).
    [CrossRef] [PubMed]
  5. J. Benschop and G. van Rosmalen, Appl. Opt. 30, 1179 (1991).
    [CrossRef] [PubMed]
  6. S. Kimura and T. Wilson, Appl. Opt. 30, 2143 (1991).
    [CrossRef] [PubMed]
  7. M. Gu, C. J. R. Sheppard, and X. Gan, J. Opt. Soc. Am. A 8, 1755 (1991).
    [CrossRef]
  8. D. Bird and M. Gu, Opt. Lett. 27, 1031 (2002).
    [CrossRef]
  9. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, Opt. Lett. 21, 543 (1996).
    [CrossRef] [PubMed]
  10. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
  11. D. Bird and M. Gu, Appl. Opt. 41, 1852 (2002).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

2002

D. Bird and M. Gu, Opt. Lett. 27, 1031 (2002).
[CrossRef]

D. Bird and M. Gu, Appl. Opt. 41, 1852 (2002).
[CrossRef] [PubMed]

1998

G. A. Wagnieres, W. M. Star, and B. C. Wilson, Photochem. Photobiol. 68, 603 (1998).
[CrossRef]

1996

1992

1991

1990

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Benschop, J.

Bird, D.

D. Bird and M. Gu, Opt. Lett. 27, 1031 (2002).
[CrossRef]

D. Bird and M. Gu, Appl. Opt. 41, 1852 (2002).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Dabbs, T.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gan, X.

Glass, M.

Gu, M.

D. Bird and M. Gu, Opt. Lett. 27, 1031 (2002).
[CrossRef]

D. Bird and M. Gu, Appl. Opt. 41, 1852 (2002).
[CrossRef] [PubMed]

M. Gu, C. J. R. Sheppard, and X. Gan, J. Opt. Soc. Am. A 8, 1755 (1991).
[CrossRef]

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

Kimura, S.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1999).
[CrossRef]

Sheppard, C. J. R.

Southern, J. F.

Star, W. M.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, Photochem. Photobiol. 68, 603 (1998).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Tearney, G. J.

van Rosmalen, G.

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, Photochem. Photobiol. 68, 603 (1998).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Weissman, N. J.

Wilson, B. C.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, Photochem. Photobiol. 68, 603 (1998).
[CrossRef]

Wilson, T.

Appl. Opt.

D. Bird and M. Gu, Appl. Opt. 41, 1852 (2002).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Lett.

D. Bird and M. Gu, Opt. Lett. 27, 1031 (2002).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, Photochem. Photobiol. 68, 603 (1998).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental two-photon fluorescence endoscope with a single-mode optical fiber coupler, a microprism, and a GRIN rod lens. O1, 0.25-NA 10× microscope objective; ND, neutral-density filter; BF, bandpass filter; C1, C2, fiber chucks; P1, P2, P3, coupler ports; PMT, photomultiplier tube. Inset (a), detailed component structure of the micro-optic scanning head.

Fig. 2
Fig. 2

Coupling efficiency of the two-photon fiber-optic microendoscope for the output power measured at the focus of the scan head and the input power measured at port 3 of the fiber coupler. Inset (a), axial responses to a fluorescent polymer block for an input power of 100 mW (dotted curve) and 400 mW (solid curve). Inset (b), dependence of the FWHM of the axial response as a function of the excitation power.

Fig. 3
Fig. 3

Schematic diagram of the cylindrical sample.

Fig. 4
Fig. 4

Series of transverse cross-sectional images taken at 0.5-mm steps into a cylindrical channel with a 5-mm equilateral-triangle fluorescent sheet attached to the internal surface. The initial series (1) was acquired 1.0 mm into the cylinder relative to the base of the fluorescent triangle.

Metrics