Abstract

Ultrasound-modulated light tomography is a new technique that combines laser light and ultrasound to provide a representation of the light density inside turbid media. We present a method that can produce two- or three-dimensional light density representations with standard ultrasonic pulses. This technique should allow simple, direct fusion of ultrasonic images with optical tomography.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, and A. G. Yodh, Opt. Lett. 24, 1050 (1999).
    [CrossRef]
  2. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, Proc. SPIE 1882, 86 (1993).
    [CrossRef]
  3. D. Dolfi and F. Micheron, PCT number W 89/00278 (1989).
  4. M. Kempe, M. Larionov, D. Zaslavski, and A. Z. Genack, J. Opt. Soc. Am. A 14, 1151 (1997).
    [CrossRef]
  5. L. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
    [CrossRef] [PubMed]
  6. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, Opt. Lett. 24, 181 (1999).
    [CrossRef]
  7. A. Lev, Z. Kotler, and B. Sfez, Opt. Lett. 25, 378 (2000).
    [CrossRef]
  8. A. Lev and B. Sfez, Opt. Lett. 27, 473 (2002).
    [CrossRef]
  9. E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H. Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).
    [CrossRef]
  10. L. V. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
    [CrossRef]

2002 (1)

2001 (1)

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H. Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).
[CrossRef]

2000 (1)

1999 (2)

1998 (1)

L. V. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
[CrossRef]

1997 (1)

1995 (1)

1993 (1)

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, Proc. SPIE 1882, 86 (1993).
[CrossRef]

Boccara, A. C.

Dolfi, D.

D. Dolfi and F. Micheron, PCT number W 89/00278 (1989).

Durduran, T.

Genack, A. Z.

Granot, E.

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H. Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).
[CrossRef]

Holboke, M.

Jacques, S. L.

L. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, Proc. SPIE 1882, 86 (1993).
[CrossRef]

Kempe, M.

Kotler, Z.

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H. Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).
[CrossRef]

A. Lev, Z. Kotler, and B. Sfez, Opt. Lett. 25, 378 (2000).
[CrossRef]

Ku, G.

L. V. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
[CrossRef]

Larionov, M.

Lebec, M.

Lev, A.

A. Lev and B. Sfez, Opt. Lett. 27, 473 (2002).
[CrossRef]

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H. Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).
[CrossRef]

A. Lev, Z. Kotler, and B. Sfez, Opt. Lett. 25, 378 (2000).
[CrossRef]

Leveque, S.

Micheron, F.

D. Dolfi and F. Micheron, PCT number W 89/00278 (1989).

Ntziachristos, V.

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, Proc. SPIE 1882, 86 (1993).
[CrossRef]

Saint-Jalmes, H.

Sfez, B.

Sfez, B. G.

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H. Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).
[CrossRef]

Taitelbaum, H.

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H. Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).
[CrossRef]

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, Proc. SPIE 1882, 86 (1993).
[CrossRef]

Wang, L.

Wang, L. V.

L. V. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
[CrossRef]

Yodh, A. G.

Zaslavski, D.

Zhao, X.

Zhu, Q.

J. Opt. Soc. Am. A (1)

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H. Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

L. V. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, Proc. SPIE 1882, 86 (1993).
[CrossRef]

Other (1)

D. Dolfi and F. Micheron, PCT number W 89/00278 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for pulse experiments. Continuous-wave light from the laser diode is fiber coupled to the sample. Light is detected by a fiber-coupled photomultiplier tube (PMT). An electric pulse generated by an arbitrary function generator is amplified and sent to the ultrasound transducer.

Fig. 2
Fig. 2

Principle of phase-conserving pulse-to-pulse transmission. The starting phase of each pulse is the same as the trailing phase of the preceding pulse. For display purposes the following parameters were used: frequency of 1.11 MHz and four cycles with a repetition rate of 79 KHz. In real experiments the following parameters were used: four cycles at 1.25 MHz, with a repetition rate of 19 kHz.

Fig. 3
Fig. 3

Explanation of the reshaping algorithm. The blocks represent data from the analog-to-digital card. (a) Electric signal is sent to the transducer: one train of duration τb followed by a silence of duration p-1τb. (b) Trace is cut into subtraces of duration pτb. (c) Data are reshaped: sections located at the same relative position are appended to form p new traces. (d) p power spectra are applied to these subtraces.

Fig. 4
Fig. 4

Three-dimensional experimental data of the photon density inside the homogenous phantom. The three-dimensional data cut at 16-mm height to show the photon density inside.

Metrics