Abstract

A frequency comb spanning more than one octave has been achieved by injecting the second-harmonic generation (780 nm) of a mode-locked fiber laser (1.56 µm) into a photonic crystal fiber. We propose and realize a novel interferometric scheme for observing the carrier-envelope offset frequency of the frequency comb. Frequency noise has been observed on the measured carrier-envelope offset frequency, which has been confirmed to be generated in the photonic crystal fiber by comparing the measured beat frequencies between cw lasers and frequency combs before and after the photonic crystal fiber. The mode-locked fiber laser is considered to be an important candidate for the light source used in realizing a compact optical frequency measurement system including applications in the telecommunication bands.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription