Abstract

Cascaded Raman Stokes lasing in an ultrahigh-Q silica microsphere resonator coupled to a tapered fiber is demonstrated and analyzed. With less than 900 µW of pump power near 980 nm, five cascaded Stokes lasing lines are generated. In addition, a threshold power of 56.4 µW for the first-order Stokes lasing is achieved. The Stokes lasing lines exhibit distinct characteristics depending on their order, as predicted by theoretical analysis.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
    [CrossRef]
  2. G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, Opt. Lett. 28, 426 (2003).
    [CrossRef] [PubMed]
  3. S. Spillane, T. Kippenberg, and K. Vahala, Nature 415, 621 (2002).
    [CrossRef] [PubMed]
  4. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, Opt. Lett. 23, 247 (1998).
    [CrossRef]
  5. S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef] [PubMed]
  6. H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
    [CrossRef] [PubMed]
  7. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
    [CrossRef] [PubMed]
  8. M. L. Gorodetsky and V. S. Ilchenko, J. Opt. Soc. Am. B 16, 147 (1999).
    [CrossRef]
  9. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
    [CrossRef]
  10. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).
  11. D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, Phys. Rev. A 53, 3565 (1996).
    [CrossRef] [PubMed]
  12. The relation between gj and gRB is given by gj=(λ1j)[c2/(2n2Veff)]gRB. For simplicity the mode volume Veff is assumed to be independent of wavelength.

2003

2002

2000

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

1999

1998

1996

D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, Phys. Rev. A 53, 3565 (1996).
[CrossRef] [PubMed]

1994

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

1986

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

Braunstein, D.

D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, Phys. Rev. A 53, 3565 (1996).
[CrossRef] [PubMed]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Campillo, A. J.

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

Chang, R. K.

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

Dianov, E. M.

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

Eichler, H. J.

Gad, G. M. A.

Gorodetsky, M. L.

Haus, H.

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).

Ilchenko, V. S.

Kaminskii, A. A.

Khazanov, A. M.

D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, Phys. Rev. A 53, 3565 (1996).
[CrossRef] [PubMed]

Kimble, H. J.

Kippenberg, T.

S. Spillane, T. Kippenberg, and K. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

Kippenberg, T. J.

Koganov, G. A.

D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, Phys. Rev. A 53, 3565 (1996).
[CrossRef] [PubMed]

Lin, H.-B.

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

Mabuchi, H.

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Prokhorov, A. M.

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

Qian, S.-X.

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

Shuker, R.

D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, Phys. Rev. A 53, 3565 (1996).
[CrossRef] [PubMed]

Spillane, S.

S. Spillane, T. Kippenberg, and K. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

Spillane, S. M.

Streed, E. W.

Vahala, K.

S. Spillane, T. Kippenberg, and K. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

Vahala, K. J.

Vernooy, D. W.

IEEE J. Sel. Top. Quantum Electron.

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nature

S. Spillane, T. Kippenberg, and K. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, Phys. Rev. A 53, 3565 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Other

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).

The relation between gj and gRB is given by gj=(λ1j)[c2/(2n2Veff)]gRB. For simplicity the mode volume Veff is assumed to be independent of wavelength.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Typical emission spectrum of the microsphere cascaded Raman laser. The pump wavelength is at 976.08 nm. Inset: optical micrograph of a microsphere taper system used in the experiment.

Fig. 2
Fig. 2

(a) Theoretical plot of output Raman Stokes power as high as fourth order. (b) Stokes lasing powers (first, second, 1550-nm pumping; third, fourth, 980-nm pumping) versus input pump power. Each data set corresponds to measurements taken with a different sphere.

Fig. 3
Fig. 3

(a) Threshold pump power versus the gap distance for various Stokes orders (sphere–taper contact location was set at 0 µm). (b) Threshold pump power versus Stokes order and theoretical curve (solid curve) for two different spheres.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

da0dt=-12τ0a0+κ0s-ω0ω1g1a0a12,
dajdt=-12τjaj+gjajaj-12-ωjωj+1gj+1ajaj+12, j=1,2,,N-1,
daNdt=-12τNaN+gNaNaN-12,
PNκN2aN2=κ02κN2g02k=0N/2αN-2kgN-2kPin-κN2k=1N/2αN-2k-1gN-2k-1 N even,
PNκN2aN2=κ02κN2g0k=0N-1/2αN-2kgN-2k1/2Pin-κN2k=1N+1/2αN-2k-1gN-2k-1 N odd.
Pth=π2n2λ0λ1VeffgRBk=0N/21Qt,N-2k2×k=1N/2Qe,0Qt,N-2k-1 N even,
Pth=π2n2λ0λ1VeffgRBk=1N+1/21Qt,N-2k-12×k=0N-1/2Qe,0Qt,N-2k N odd,

Metrics