Abstract

We introduce and demonstrate a new microscopy concept: imaging interferometric microscopy (IIM), which is related to holography, synthetic-aperture imaging, and off-axis–dark-field illumination techniques. IIM is a wavelength-division multiplex approach to image formation that combines multiple images covering different spatial-frequency regions to form a composite image with a resolution much greater than that permitted by the same optical system using conventional techniques. This new type of microscopy involves both off-axis coherent illumination and reinjection of appropriate zero-order reference beams. Images demonstrate high resolution, comparable with that of a high-numerical-aperture (NA) objective, while they retain the long working distance, the large depth of field, and the large field of view of a low-NA objective. A Fourier-optics model of IIM is in good agreement with the experiment.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Ark. Mikrosk. Anat. 9, 413 (1873).
    [CrossRef]
  2. M. G. L. Gustafsson, Curr. Opin. Struct. Biol. 9, 627 (1999), and references therein.
    [CrossRef] [PubMed]
  3. S. W. Hell and E. H. K. Stelzer, Opt. Commun. 93, 277 (1992).
    [CrossRef]
  4. A. V. Failla, A. Cavallo, and C. Cremer, Appl. Opt. 41, 6651 (2002).
    [CrossRef] [PubMed]
  5. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  7. E. R. Dowski and W. T. Cathey, Appl. Opt. 34, 1859 (1995).
    [CrossRef] [PubMed]
  8. International Technology Roadmap for Semiconductors at www.public.itrs.net.
  9. X. Chen and S. R. J. Brueck, Opt. Lett. 24, 124 (1999).
    [CrossRef]
  10. C. J. Oliver, J. Phys. D 22, 871 (1989).
    [CrossRef]
  11. F. Le Clerc, M. Gross, and L. Collot, Opt. Lett. 26, 1550 (2001).
    [CrossRef]
  12. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, Proc. SPIE 4689, 802 (2002).
    [CrossRef]
  13. S. R. J. Brueck and X. Chen, J. Vac. Sci. Technol. B 17, 908 (1999).
    [CrossRef]

2002 (2)

C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, Proc. SPIE 4689, 802 (2002).
[CrossRef]

A. V. Failla, A. Cavallo, and C. Cremer, Appl. Opt. 41, 6651 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (3)

S. R. J. Brueck and X. Chen, J. Vac. Sci. Technol. B 17, 908 (1999).
[CrossRef]

X. Chen and S. R. J. Brueck, Opt. Lett. 24, 124 (1999).
[CrossRef]

M. G. L. Gustafsson, Curr. Opin. Struct. Biol. 9, 627 (1999), and references therein.
[CrossRef] [PubMed]

1995 (1)

1994 (1)

1992 (1)

S. W. Hell and E. H. K. Stelzer, Opt. Commun. 93, 277 (1992).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1989 (1)

C. J. Oliver, J. Phys. D 22, 871 (1989).
[CrossRef]

1873 (1)

E. Abbe, Ark. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Abbe, E.

E. Abbe, Ark. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Brueck, S. R. J.

C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, Proc. SPIE 4689, 802 (2002).
[CrossRef]

S. R. J. Brueck and X. Chen, J. Vac. Sci. Technol. B 17, 908 (1999).
[CrossRef]

X. Chen and S. R. J. Brueck, Opt. Lett. 24, 124 (1999).
[CrossRef]

Cathey, W. T.

Cavallo, A.

Chen, X.

X. Chen and S. R. J. Brueck, Opt. Lett. 24, 124 (1999).
[CrossRef]

S. R. J. Brueck and X. Chen, J. Vac. Sci. Technol. B 17, 908 (1999).
[CrossRef]

Collot, L.

Cremer, C.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Dowski, E. R.

Failla, A. V.

Gross, M.

Gustafsson, M. G. L.

M. G. L. Gustafsson, Curr. Opin. Struct. Biol. 9, 627 (1999), and references therein.
[CrossRef] [PubMed]

Hell, S. W.

S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
[CrossRef] [PubMed]

S. W. Hell and E. H. K. Stelzer, Opt. Commun. 93, 277 (1992).
[CrossRef]

Kuznetsova, Y.

C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, Proc. SPIE 4689, 802 (2002).
[CrossRef]

Le Clerc, F.

Oliver, C. J.

C. J. Oliver, J. Phys. D 22, 871 (1989).
[CrossRef]

Schwarz, C. J.

C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, Proc. SPIE 4689, 802 (2002).
[CrossRef]

Stelzer, E. H. K.

S. W. Hell and E. H. K. Stelzer, Opt. Commun. 93, 277 (1992).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Wichmann, J.

Appl. Opt. (2)

Ark. Mikrosk. Anat. (1)

E. Abbe, Ark. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Curr. Opin. Struct. Biol. (1)

M. G. L. Gustafsson, Curr. Opin. Struct. Biol. 9, 627 (1999), and references therein.
[CrossRef] [PubMed]

J. Phys. D (1)

C. J. Oliver, J. Phys. D 22, 871 (1989).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. R. J. Brueck and X. Chen, J. Vac. Sci. Technol. B 17, 908 (1999).
[CrossRef]

Opt. Commun. (1)

S. W. Hell and E. H. K. Stelzer, Opt. Commun. 93, 277 (1992).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, Proc. SPIE 4689, 802 (2002).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (1)

International Technology Roadmap for Semiconductors at www.public.itrs.net.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Frequency space coverage of three-exposure IIM with a NA of 0.4 and of conventional incoherent illumination imaging with a NA of 0.9. The experiment is illustrated by the figure at the left with one offset illumination in each of the x and y directions. Additional exposures can enhance the resolution in the xy direction, as indicated by the short-dashed circles, or oriented in other directions (e.g., 45° lines) as indicated by the dashed-dotted circles.

Fig. 2
Fig. 2

Schematic of the high-frequency imaging setup. The incoming beam is split into illumination beam A and reference beam B; beam B is reintroduced to the image plane at the CCD, replacing the zero order that did not pass through the optical system (dashed lines). The three beams impinging upon the optical system represent the range of image spatial frequencies collected. Beam B is mode matched with a second microscope objective (M). FP is the relayed Fourier plane.

Fig. 3
Fig. 3

A, On-axis image after dark-field and background subtraction and renormalization. Only the low-frequency components of the mask are imaged. B, High-frequency image of horizontal structures after dark-field and reference image subtraction and renormalization. C, High-frequency image of vertical structures after dark-field and reference image subtraction and renormalization. D, Reconstructed image. E, Incoherent illumination; white-light image from a 100×, 0.9-NA lens.

Fig. 4
Fig. 4

Comparison of the cross sections of three-exposure, 0.4-NA IIM (A, simulation; C, reconstructed experiment) and the 0.9-NA incoherent illumination aerial images (B, simulation; D, experiment).

Metrics