Abstract

The formula for the time shift of a dispersion-managed soliton that results from its collision with other solitons in different channels consists of two terms, one related to the frequency shift during collision, and the other related to the residual frequency shift after collision. It is found that an optimal relative delay exists between pulses in adjacent channels after each dispersion-managed span that balances the contributions from the two terms and minimizes the overall time shift, leading to a substantial improvement in transmission performance.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Mamyshev and L. F. Mollenauer, Opt. Lett. 24, 448 (1999).
    [CrossRef]
  2. C. Xu, C. Xie, and L. F. Mollenauer, Opt. Lett. 27, 1303 (2002).
    [CrossRef]
  3. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, J. Lightwave Technol. 3, 362 (1991).
    [CrossRef]
  4. H. Sugahara, H. Kato, and Y. Kodama, Electron. Lett. 33, 1065 (1997).
    [CrossRef]
  5. J. F. L. Devaney, W. Forysiak, A. M. Niculae, and N. J. Doran, Opt. Lett. 22, 1695 (1997).
    [CrossRef]
  6. D. J. Kaup, B. A. Malomed, and J. Yang, Opt. Lett. 23, 1600 (1998).
    [CrossRef]
  7. C. J. McKinstrie, Opt. Commun. 205, 123 (2002).
    [CrossRef]
  8. X. Wei, X. Liu, C. Xie, and L. F. Mollenauer, Opt. Lett. 28, 983 (2003), and references therein.
    [CrossRef] [PubMed]
  9. H. Sugahara and A. Maruta, J. Opt. Soc. Am. B 18, 419 (2001).
    [CrossRef]

2003

2002

2001

1999

1998

1997

1991

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, J. Lightwave Technol. 3, 362 (1991).
[CrossRef]

Devaney, J. F. L.

Doran, N. J.

Evangelides, S. G.

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, J. Lightwave Technol. 3, 362 (1991).
[CrossRef]

Forysiak, W.

Gordon, J. P.

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, J. Lightwave Technol. 3, 362 (1991).
[CrossRef]

Kato, H.

H. Sugahara, H. Kato, and Y. Kodama, Electron. Lett. 33, 1065 (1997).
[CrossRef]

Kaup, D. J.

Kodama, Y.

H. Sugahara, H. Kato, and Y. Kodama, Electron. Lett. 33, 1065 (1997).
[CrossRef]

Liu, X.

Malomed, B. A.

Mamyshev, P. V.

Maruta, A.

McKinstrie, C. J.

C. J. McKinstrie, Opt. Commun. 205, 123 (2002).
[CrossRef]

Mollenauer, L. F.

Niculae, A. M.

Sugahara, H.

H. Sugahara and A. Maruta, J. Opt. Soc. Am. B 18, 419 (2001).
[CrossRef]

H. Sugahara, H. Kato, and Y. Kodama, Electron. Lett. 33, 1065 (1997).
[CrossRef]

Wei, X.

Xie, C.

Xu, C.

Yang, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Evolution of the frequency shift (upper) and time shift (lower) of a colliding pulse. Left, no loss; right, loss compensated by backward Raman pumping. Davg=0.15 ps/nm km and τACPS=6 ps.

Fig. 2
Fig. 2

Evolution of the frequency shift (upper) and time shift (lower) of a colliding pulse in dispersion maps for which τACPS=48 ps (left) and τACPS=240 ps (right).

Fig. 3
Fig. 3

Eye diagrams after 6000-km transmissions in dispersion maps for which τACPS=6 ps (left), 48 ps (middle), and 240 ps (right).

Fig. 4
Fig. 4

Dependence of the maximal timing jitter after 6000-km transmission on τACPS/T. The other simulation parameters are the same as those for Fig. 3.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δtcolln=D+L+δfresn-1λ2c+z=0L+D+δfz,nλ2cdz+D-L-δfresnλ2c,
δfz,n=z=0zγpz,nt12Pt12z,ndz,
Δtcoll=n=1mD+L+γfresn+D-L-δfresnλ2c-n=1mz=0L+dzD+z=zL+dzγpz,nδ12×Pδ12z,nλ2c·
Δtcoll=Davgz=0mL+δfreszdzλ2c-z=0L+dzD+×z=zL+dzγpzλ2c×δ120,1δ12L+,mdδ12τACPSδ12Pδ12z,n+OτACPS.
ΔTcoll=aτACPS2+bτACPS,
ΔTcoll=aτACPS+bτACPS3/2.
τACPS=2a3b0.4,
ΔTcoll=5332a1.5b0.4.

Metrics