Abstract

We present a novel method for the formation of a complete depolarizer that is based on a polarization-state scrambling procedure over the space domain. Such an element can be achieved by use of cascaded, computer-generated, space-variant subwavelength dielectric gratings. We introduce a theoretical analysis and experimentally demonstrate a depolarizer for infrared radiation at a wavelength of 10.6 µm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Mazurczyk and J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
    [CrossRef]
  2. A. D. Kersey, M. J. Marrone, and A. Dandridge, J. Lightwave Technol. 8, 838 (1990).
    [CrossRef]
  3. B. F. Lyot, Ann. Observatoire Astron. Phys. Paris (1928).
  4. B. H. Billings, J. Opt. Soc. Am. 41, 966 (1951).
  5. F. Heismann and K. L. Tokuda, Opt. Lett. 20, 1008 (1995).
    [CrossRef]
  6. J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
    [CrossRef]
  7. E. Hasman, V. Kliener, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
    [CrossRef]
  8. E. Collett, Polarized Light (Marcel Dekker, New York, 1993).
  9. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, Opt. Lett. 21, 1513 (1996).
    [CrossRef] [PubMed]
  10. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 28, 510 (2003).
    [CrossRef] [PubMed]

2003

E. Hasman, V. Kliener, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 28, 510 (2003).
[CrossRef] [PubMed]

1996

1995

1994

V. J. Mazurczyk and J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
[CrossRef]

1993

E. Collett, Polarized Light (Marcel Dekker, New York, 1993).

1990

A. D. Kersey, M. J. Marrone, and A. Dandridge, J. Lightwave Technol. 8, 838 (1990).
[CrossRef]

J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
[CrossRef]

1951

1928

B. F. Lyot, Ann. Observatoire Astron. Phys. Paris (1928).

Biener, G.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 28, 510 (2003).
[CrossRef] [PubMed]

E. Hasman, V. Kliener, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

Billings, B. H.

Cheng, C. C.

Chipman, R. A.

J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
[CrossRef]

Collett, E.

E. Collett, Polarized Light (Marcel Dekker, New York, 1993).

Dandridge, A.

A. D. Kersey, M. J. Marrone, and A. Dandridge, J. Lightwave Technol. 8, 838 (1990).
[CrossRef]

Fainman, Y.

Hasman, E.

E. Hasman, V. Kliener, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 28, 510 (2003).
[CrossRef] [PubMed]

Heismann, F.

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and A. Dandridge, J. Lightwave Technol. 8, 838 (1990).
[CrossRef]

Kleiner, V.

Kliener, V.

E. Hasman, V. Kliener, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

Lyot, B. F.

B. F. Lyot, Ann. Observatoire Astron. Phys. Paris (1928).

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and A. Dandridge, J. Lightwave Technol. 8, 838 (1990).
[CrossRef]

Mazurczyk, V. J.

V. J. Mazurczyk and J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
[CrossRef]

McGuire, Jr., J. P.

J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
[CrossRef]

Niv, A.

E. Hasman, V. Kliener, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 28, 510 (2003).
[CrossRef] [PubMed]

Scherer, A.

Sun, P. C.

Tokuda, K. L.

Tyan, R. C.

Xu, F.

Zyskind, J. L.

V. J. Mazurczyk and J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
[CrossRef]

Ann. Observatoire Astron. Phys. Paris

B. F. Lyot, Ann. Observatoire Astron. Phys. Paris (1928).

Appl. Phys. Lett.

E. Hasman, V. Kliener, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

V. J. Mazurczyk and J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. J. Marrone, and A. Dandridge, J. Lightwave Technol. 8, 838 (1990).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
[CrossRef]

Opt. Lett.

Other

E. Collett, Polarized Light (Marcel Dekker, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic presentation of our concept for depolarizing over the space domain. The insets illustrate the geometry of the subwavelength gratings. (b) Scanning electron microscope image of a typical cross section of the grating profile of the QWP.

Fig. 2
Fig. 2

Illustration of the outgoing beam’s polarization state when the polarization of the incoming beam is (a) vertically linear, (b) horizontally linear, (c) linear at 45°, (d) circularly polarized light. The spheres show the trajectories of the outgoing polarization states onto the Poincaré spheres.

Fig. 3
Fig. 3

Measured and predicted DOP as a function of the orientation of the QWP, through which the incident beam has been transmitted.

Fig. 4
Fig. 4

Average intensity Ioutx of beams transmitted through (a)–(c) a rotating polarizer and (d) a QWP followed by a rotating polarizer. The incident polarization state is (a) linear (0°), (b) linear (45°), (c), (d) right-hand circular. Results having used the depolarizer are shown with dots, without the depolarizer are shown with triangles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Mθ=10000cos 2θ cos θsin 2θ cos θsin θ0-cos 2θ sin θ-sin 2θ sin θcos θ0sin 2θ-cos 2θ0,

Metrics